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Abstract

This study examines the unintended health consequences of voluntary responses to COVID-19.
We focus on general health screening in Korea, using administrative data that link medical claims
and screening records. At the national level, screening rates declined markedly in 2020, the first
year of the pandemic, relative to counterfactual trends. Complementing this aggregate pattern,
individual-level analysis reveals notable heterogeneity: declines were larger among those with
higher predicted risk of chronic disease. We then assess the consequences of forgone screening,
employing propensity score matching and event study designs. Our estimates show that, had
they been screened, individuals who missed screening would have been more likely to initiate
care for chronic diseases. The costs of missed screening were especially large among those
at higher predicted risk of chronic disease. Such delays in management led to more advanced
conditions at the time of care initiation. Our findings show that, even without strict quarantine
policies, voluntary responses to infection can undermine preventive care, disproportionately
affecting high-benefit groups. This underscores the importance of balancing infection control
with the continuity of preventive care during health crises.
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1 Introduction

During the COVID-19 pandemic, individuals voluntarily adopted preventive behaviors—such as
mask-wearing and avoiding public spaces—in response to infection risk (Gupta et al., 2020). This
reflects what is often referred to as a prevalence response, a specific type of voluntary response to
rising infection risk (Philipson, 2000). Notably, recent evidence suggests that government-imposed
interventions (e.g., lockdowns) played a relatively limited role, whereas these voluntary responses
accounted for much of the observed reduction in infection rates (Agrawal et al., 2023; Cantor et al.,
2022; Ziedan et al., 2020).

While these voluntary responses were crucial in curbing the spread of COVID-19, they may have
also led to unintended harms. For example, the avoidance of healthcare facilities is likely to have
disrupted routine and preventive care, such as health screening and chronic disease management,
potentially worsening health outcomes for vulnerable populations (Bennett et al., 2015). These
concerns highlight the need for a clearer understanding of the unintended health consequences
associated with voluntary responses, as such knowledge could help inform public health policies
that better balance infection control with the mitigation of collateral harms. Yet empirical evidence
on these consequences remains limited (Dorn et al., 2023).

However, identifying the health impact of voluntary responses during the pandemic presents im-
portant empirical challenges. First, it is difficult to disentangle these individual-level decisions from
the effects of public health interventions. In many countries, declines in non-COVID health care
utilization occurred alongside government-imposed mobility restrictions. In addition, infection con-
trol policies—such as the temporary closure of facilities following confirmed patient visits—may
have reduced the supply of non-COVID care. Second, even in the absence of such interventions,
other pandemic-related factors—such as actual infection or income shocks—may have influenced
health care demand, complicating efforts to isolate the effect of voluntary responses alone.

In this regard, the Korean government’s response to the pandemic and the context of the gen-
eral health screening program offer a suitable setting for analyzing the health impact of voluntary

responses. Unlike other high-income countries, Korea did not implement lockdowns in 2020 (Ari-



adne Labs, 2025). Its healthcare system remained relatively stable, partly due to the low number of
confirmed cases—about 1,200 per 1 million people by the end of the year, well below the global
average (Mathieu et al., 2020). Only a small number of healthcare facilities experienced tempo-
rary closures. These conditions minimize confounding from policy-induced constraints, enabling
a clearer identification of the effect of voluntary responses on health screening take-up. At the
same time, the general health screening program is designed to cover the entire population and
imposes no out-of-pocket costs (Kang, 2022). As a result, economic barriers to screening take-up
are minimized, reducing potential confounding from income shocks.

We use administrative data from the National Health Insurance Service (NHIS), which ad-
ministers the program as Korea’s single insurer and maintains detailed records linking medical
claims with health screenings. This allows us to examine heterogeneity in individuals’ responses
to COVID-19 based on their health status, and to quantify the health consequences of missed
screenings.

To examine the effect of COVID-19 on health screening participation, we conduct both a
national-level and an individual-level analysis. At the national level, we apply a modified interrupted
time series approach that estimates the counterfactual trend in weekly screening rates absent the
pandemic, using 2017-2019 data. We then compare this counterfactual with the actual screening
rates observed in 2020 and 2021. Complementing this, the individual-level analysis investigates
whether responses to COVID-19 varied according to individuals’ risk of chronic disease. This
heterogeneity is noteworthy because high-risk individuals may benefit more from timely screening,
yet hypertension and diabetes—the main target diseases—are also major risk factors for severe
COVID-19. Thus, it is ex ante unclear whether high-risk groups would reduce screening relative
to lower-risk groups, making this an empirical question. To answer this question, we focus on
individuals who had not used health care for hypertension or diabetes in the past three years but had
received a health screening one to two years earlier. We then predict their risk of chronic disease
using prior screening records and claims data.

According to the national-level analysis, health screening rates dropped sharply during the



initial COVID-19 outbreak in early 2020, followed by a gradual recovery consistent with a pattern
of intertemporal substitution. Over the course of 2020, screening rates declined by approximately
7.520 percentage points relative to the counterfactual (Figure 1(a)). In contrast, despite a higher
number of confirmed cases in 2021, screening rates largely aligned with the counterfactual trend
(Figure 1(b)). This suggests that the decline in screening was largely confined to the first year of
the pandemic. When accounting for the extension of the screening period, the decline was partially
offset, yet a cumulative decrease of about 5.680 percentage points remained in 2020 (Figure 2).

Next, the individual-level analysis shows that individuals with higher chronic disease risk had
a greater decline in the probability of receiving a health screening during the pandemic. Based on
hypertension risk, the lowest-risk group (1st quintile) experienced a 4.38 percentage point decline
in screening, while the highest-risk group (5th quintile) showed an additional 2.30 percentage point
drop (Figure 3(a)). A similar but smaller pattern is observed for diabetes risk (Figure 3(b)). We
further break down the predicted risk into its individual predictors and examine how screening
uptake varied across these factors. In particular, participation declined most notably among older
adults, medical aid recipients, and individuals with elevated biomarkers—such as high BMI, fasting
blood glucose, and blood pressure. These findings suggest that high-risk individuals were less likely
to receive screening during the pandemic, likely due to voluntary responses in the absence of strict
containment measures.

To assess the health consequences of reduced screening in 2020, we estimate the Average
Treatment Effect on the Untreated (ATU) using propensity score matching. The same variables
as in the risk prediction models are employed to account for differences in health status and prior
utilization. Although this approach balances observed characteristics, concerns about selection
remain, particularly if unobserved risk perceptions influenced screening decisions. The matching
covariates are plausibly tied to risk perception during the pandemic—for example, individuals at
higher risk of chronic disease were also recognized as high-risk groups for COVID-19 (Centers
for Disease Control and Prevention, 2025; Geng et al., 2021). Yet actual and perceived risks are

not perfectly aligned, and other sources of unobserved heterogeneity may remain. To assess the



potential for systematic bias, we also implement an event study that evaluates whether screened and
unscreened individuals exhibited similar care patterns prior to screening and whether screening
subsequently triggered distinct changes.

The ATU estimates indicate that, among the untreated, receiving a screening would have in-
creased the probability of initiating hypertension-related care by 2.58 percentage points, equivalent
to roughly 35% of the untreated group’s mean (Table 2). Similarly, the number of related care
visits would have increased by 0.217, corresponding to about 46% of the mean. For diabetes, the
probability of initiating care would have increased by 2.42 percentage points, while the number of
related visits would have increased by 0.098—representing 35% and 41% of the mean, respectively.
These findings indicate that delays in health screening during the COVID-19 pandemic hindered
the timely management of chronic diseases.

According to the event study results, the likelihood of initiating care and the frequency of
related visits both rise sharply after screening. For hypertension, the probability of care initiation
increases by 1.140 percentage points, and the number of visits remains elevated thereafter (Figure
6(a), 6(b)). A similar pattern emerges for diabetes (Figure 6(c), 6(d)). By contrast, no changes
appear in the placebo group assigned a pseudo screening month. In sum, these results reinforce a
causal interpretation of the ATU estimates from propensity score matching. They further show that
missed screenings hampered not only the initiation of chronic disease care but also its subsequent
management.

Having established that missed screenings delay care for chronic diseases, we next quantify the
downstream impact of such delays. This allows us to offer more context on the welfare implica-
tions—specifically, whether short-term avoidance of preventive care during the pandemic led to
clinically meaningful deterioration in health. Our analysis focuses on the presence of complications
associated with hypertension and diabetes at the time of care initiation. We find that health screen-
ing substantially reduces the likelihood of initiating care with complications. For hypertension,
the probability declines by 5.7 percentage points—about 20 percent relative to the mean of the

untreated group. For diabetes, the corresponding reduction is 2.9 percentage points, or 13 percent



(Table 3).

The rest of the paper is organized as follows. Section 2 reviews the related literature and provides
background for our study. Section 3 describes the data. Section 4 analyzes changes in screening
rates during the COVID-19 pandemic, and Section 5 examines the effects of health screenings on

chronic disease management. Section 6 concludes.

2 Background

2.1 Related Literature

The COVID-19 pandemic produced not only direct health burdens but also indirect ones arising
from delayed or forgone care for non-COVID conditions (Dorn et al., 2023). In the United States,
Whaley et al. (2020) show that overall health care use fell by 23% in March 2020 among privately
insured individuals, with substantial declines in preventive and elective care. McBain et al. (2021)
report that mammography and colonoscopy rates declined by more than 90% immediately after
the national emergency declaration, though screening rebounded within months as health systems
adapted. A similar pattern is documented by Danagoulian and Wilk (2022) in the context of dental
care. At the same time, the sharp increase in telemedicine uptake partly offset the decline in in-
person visits during the pandemic: Whaley et al. (2020) report that virtual visits replaced roughly
40% of lost office visits in the U.S., and Busso et al. (2022) find a 230% rise in consultations in
Argentina. Yet these shifts only partially compensated for the disruption, leaving many health care
needs unmet.

A substantial portion of the decline reflects involuntary disruptions stemming from government
policies. Studies exploiting geographic and temporal variation in these measures have quantified
their effects. Ziedan et al. (2020) estimate that state-mandated closures account for roughly one-
third of the approximately 40% nationwide drop in outpatient visits observed in the early months
of the U.S. pandemic. Similarly, Cantor et al. (2022) find that county-level shelter-in-place orders

significantly reduced preventive and elective service utilization. Ziedan et al. (2022) take a different



approach, exploiting variation across appointment cohorts in their exposure to cancellation risk
following the emergency declaration, and document large-scale disruptions to scheduled care.

Beyond such involuntary disruptions, the economic epidemiology literature suggests that in-
dividuals may voluntarily adjust their behaviors in response to infection risk. Philipson (2000)
theoretically shows that rising prevalence of infectious disease can induce preventive behaviors
that help limit spread, and empirical evidence confirms such prevalence responses: local pertussis
outbreaks increased vaccination uptake (Oster, 2018a; Schaller et al., 2019), while the HIN1 pan-
demic improved hygiene practices with unintended health benefits (Agiiero & Beleche, 2017; Hong
et al., 2022). However, the potential downsides of these individual choices have received far less
attention. This is particularly relevant because the trade-off between infection risk and untreated
conditions varies with health status, rendering the overall welfare effect uncertain.

Our study makes three contributions to the literature. First, we document voluntary disruptions
of care during the pandemic and demonstrate their downstream health consequences for chronic
disease management. A close comparison with Ziedan et al. (2022) shows how our study builds
on prior work. Whereas they analyze how the health care system prioritized services during the
crisis, we examine the ways in which individuals prioritized their own health needs. This focus
complements existing evidence: while policy-driven shocks typically fade once restrictions are
lifted, voluntary avoidance stems from individual perceptions of risk and thus calls for different
policy responses.

Second, we examine heterogeneity by underlying health status. The motivation is the trade-off
that the same conditions making preventive care most valuable—such as chronic disease risk—also
heighten vulnerability to infection during the pandemic. As emphasized by Chandra and Skinner
(2012), the welfare impact of changes in care utilization depends on whether foregone care is
high-value or low-value. Our analysis speaks directly to this distinction, showing that high-risk
patients—whose screenings are most likely to be high-value—were disproportionately more likely
to forgo them.

Finally, we provide more granular evidence on the health burden of the pandemic. As Chen



and McGeorge (2020) argue, assessing the health consequences of pandemics requires attention to
intermediate outcomes that shape longer-term mortality. Yet early research has focused primarily on
excess mortality (Laliotis et al., 2023; Zhang, 2021). We document an important channel through
which disrupted health care translates into long-term health consequences, focusing on delays in

the management of chronic conditions.

2.2 National Health Screening Program in Korea

The national health screening program in Korea consists of four major components, classified by
target age group and purpose. These include, first, general health screenings and cancer screenings
for adults; second, health screenings for adolescents; and third, screenings for infants and young
children. This study focuses on the general health screening, which serves as a primary route for
diagnosing chronic conditions such as hypertension and diabetes.!

Since its introduction in 1980 for government employees and private school staff, Korea’s
national health screening program has gradually expanded its target population. This expansion
aimed to maximize participation rates and applies to the general health screening as well (Kang,
2022). All costs are fully covered by the NHIS, and eligible individuals can choose any time
within the year to receive the screening. The number of screening institutions increased steadily
from 16,411 in 2011 to 23,030 in 2019 (National Assembly Budget Office, 2021), contributing to
improved accessibility and minimizing supply-side constraints. As of 2020, regional subscribers
(i.e., self-employed and non-employed individuals) are eligible for screening once every two years
if they are household heads or household members aged 20 or older. Among employee insured
individuals, non-office workers undergo screening annually, while office workers are screened
once every two years (National Health Insurance Service, 2021). Dependents of employee insured

individuals are also eligible for screening once every two years if they are aged 20 or older.

1According to the 2019 Korea National Health and Nutrition Examination Survey (KNHANES) (Korea Disease
Control and Prevention Agency, 2025), among the 72.7% of respondents aged 40 to 79 (n=4,270) who reported
receiving a health screening within the past two years (excluding cancer screenings), 90.8% received the general health
screening provided by the NHIS, while only 6.9% received a comprehensive screening paid out-of-pocket.



The institutional characteristics of the general health screening program offer a suitable context
for analyzing the effects of voluntary responses to COVID-19. First, the program is characterized
by no out-of-pocket cost and easy accessibility, which implies that individuals’ decisions to receive
screening are more likely to be influenced by infection risk during the pandemic. Second, the NHIS,
which administers the general health screening program as the single insurer in Korea, maintains an
integrated database that links individuals’ health screening records with their medical claim data.
This data integration provides several empirical advantages. It enables the prediction of chronic
disease risk based on rich health indicators and personal characteristics, allowing for the analysis of
heterogeneous responses to the pandemic. Furthermore, by tracking changes in individuals’ health
care utilization following screenings, the potential costs of forgone screenings can be estimated.

During the study period, two notable institutional changes occurred. First, in 2019, the eligible
age for dependents of regional subscribers was lowered from 40 to 20, significantly altering the
composition of the eligible population under the age of 40. This makes it difficult to compare their
screening rates before and after the pandemic. Accordingly, individuals under the age of 40 were
excluded from the analysis. Second, due to the COVID-19 pandemic, the screening period was
temporarily extended to the end of June in the following year. The extension was intended to reduce
infection risk by easing the year-end surge in examinees. As a result, focusing on screening uptake
within the standard one-year period may lead to an overestimation of the effect of the pandemic. A

more detailed discussion of this issue is provided in Section 4.

2.3 COVID-19 in Korea and Government Response

The COVID-19 conditions in Korea and the government’s response during the first year of the
pandemic provide a suitable context for understanding the health consequences of individuals’
voluntary responses to infection risk.

The low infection rate in the first year of the pandemic limits the possibility that either COVID-
19 infection itself or constraints on health care provision significantly affected screening rates.

Korea experienced three major waves of infection during 2020 (Y. Kim et al., 2021). The first wave



occurred following the country’s first confirmed case on January 20, 2020, with approximately
10,774 confirmed cases concentrated in two regions—Daegu and Gyeongsangbuk-do. The second
wave emerged around August, centered on religious facilities and mass gatherings in the Seoul
metropolitan area. The third wave, which began at the end of the year, was larger in scale than
the previous two and spread nationwide. Despite these waves, as of the end of December 2020,
Korea’s cumulative number of confirmed cases was approximately 1,208 per one million popu-
lation—substantially lower than the global average of 12,720 (Mathieu et al., 2020). In addition,
Korea continued to provide non-COVID health care during the pandemic, supported by its ample
health care capacity (Her, 2020; Oh et al., 2020).

Next, the Korean government’s approach to managing COVID-19 also constitutes a critical
contextual aspect. Throughout 2020, Korea did not implement strict containment measures such
as stay-at-home orders, which were widely adopted in other high-income countries (Ariadne Labs,
2025). Instead, the government focused on large-scale diagnostic testing and contact tracing of
confirmed cases, encouraging voluntary preventive behavior by sharing such information through
regular public briefings (Her, 2020). Consistent with this strategy, social distancing, which began
on February 29, 2020, was also implemented in the form of a public campaign. At the peak of
the first wave, additional measures were introduced, including the temporary closure of multi-use
facilities and public institutions. While the stringency of containment policies was adjusted several
times depending on the spread of COVID-19, no nationwide mobility restrictions or limitations on
access to health care facilities were imposed. In particular, although social distancing was applied
to multi-use facilities, it did not include health care facilities, making it likely that the provision of

health screening was not restricted.”

’In some instances, health care facilities temporarily closed following visits by COVID-19 patients. However,
such closures are unlikely to have significantly affected the overall supply of health care. According to data from
loss compensation applications submitted by health care facilities in 2020, only about 1.7% of facilities were officially
closed, suspended, or ordered to disinfect due to confirmed case exposure (Central Disaster and Safety Countermeasures
Headquarters, 2020a, 2020b, 2020c, 2020d, 2020e). If the degree of disruption were sufficient to restrict health care
supply, we would expect to observe a subsequent increase in unmet care needs resulting from supply-side constraints.
To examine this possibility, we refer to responses from the KNHANES regarding the incidence and reasons for unmet
care needs (Appendix Figure Al). Notably, the proportion of individuals reporting unmet care needs slightly declined,
from 0.076 before the pandemic to 0.062 during the pandemic. Nevertheless, among the reasons reported, there was a
clear rise in cases attributed to fear of infection.



3 Data

This study utilizes the National Health Information Database from the NHIS (National Health In-
surance Service, 2025). Based on this database, researchers can flexibly define the study population,
determine the appropriate sample size, and specify the sampling period using the entire population
of health insurance enrollees in Korea. The dataset used in this study consists of health insurance
enrollees who were 20 years of age or older as of 2019, selected through random sampling stratified
by sex and age.? It includes enrollee information such as sex, age, insurance type, and insurance pre-
mium, as well as medical claims data. For individuals who received a health screening, the dataset
additionally contains biomarkers and self-reported survey information, such as health behaviors.

We impose two common restrictions on our study sample. First, we limit the sample to individ-
uals who are at least 40 years old and younger than 80. This restriction reflects the fact that, prior
to 2019, individuals under the age of 40 were generally not eligible for health screenings, except
those covered by employee insurance. Second, we exclude all observations in which the individual
received a health screening even though they were not eligible.

For each analysis, we apply additional restrictions depending on its specific purpose. These are
summarized in Table 1. In Section 4, we aggregate samples from 2016 to 2021 to the weekly level for
the national-level analysis. In the individual-level analysis, which examines heterogeneous responses
to COVID-19, we use a sample of individuals who had not used health care for hypertension and
diabetes in the past three years and had received a health screening within the past one to two
years. We use a dummy variable indicating whether an individual received a health screening as
the outcome variable. In Section 5, we use samples from 2020 and 2021 to examine the effects
of delayed health screening on health care utilization. To this end, we construct separate outcome
variables for hypertension and diabetes, including initiation of care and the number of related care

visits for each condition.* We additionally examine whether the reduction in health screenings led

3The dataset includes 1,448,121 unique individuals as of 2019.

“Health care utilization related to hypertension and diabetes is identified using diagnosis codes 110-I13 for
hypertension and E10-E14 for diabetes, based on the 7th revision of the Korean Standard Classification of Diseases
(KCD-7).

10



to the initiation of care at more severe stages of chronic disease, by including, for each condition,

outcome variables indicating the presence of complications.’

4 Changes in Health Screening Rates During the COVID-19

Pandemic

4.1 Empirical Approach
4.1.1 National-Level Changes in Health Screening Rates

Eligible individuals are allowed to choose when to receive screening within the designated screening
period. As aresult, concerns about COVID-19 infection may have led them to respond in two distinct
ways regarding the timing of screening. First, they may have avoided periods of high infection risk
or heightened uncertainty and instead chosen to receive screening during safer periods, which may
reflect intertemporal substitution. Second, they may have chosen not to receive a screening at all
during the year. Accordingly, we conduct an analysis at the weekly level to examine both types of
responses.

In order to assess changes in health screening rates during the COVID-19 pandemic, we employ
a modified interrupted time series approach. Specifically, we estimate the counterfactual trend in
screening rates that would have been observed in the absence of the pandemic. To this end, we use

data from 2017 to 2019 and estimate the following equation:®
Yir = Bo+ B1Year; + BoHoliday,,; + 6y, + €41 (D)

where the outcome variable (Y,,;) is the number of health screenings per 100 eligible individuals

SFor hypertension, complications include coronary artery disease (120-125), cerebrovascular disease (I60-169),
heart failure (I50), and chronic kidney disease (N18, N19) (National Health Insurance Service, 2023). For diabetes,
subcategories of E10-E14 that indicate diabetes with complications are included.

The results are robust to the choice of sample period used to estimate the counterfactual trend, as estimates
based on equation 1, using samples from 2015-2019, 2016-2019, and 2017-2019, yield consistent results, which are
available upon request.

11



in week w and year ¢. To account for time trends in screening rates, we include a yearly linear
trend (Year,) in the model (Appendix Figure A2). The number of holidays (Holiday,,) is added
to control for holiday effects.” Since screening rates tend to be lower at the beginning of the year
and increase toward the end, we include week fixed effects (6,,) to account for seasonality. Standard
errors are robust to heteroskedasticity.

Using the estimates from equation 1, we calculate counterfactuals for 2020 and 2021. The
difference between the observed and counterfactual screening rates can be interpreted as the effect
of the pandemic on screening. For this interpretation to be valid, we assume that, in the absence
of the pandemic, health screening in 2020 and 2021 would have followed a trend similar to the
counterfactual. To support this assumption, we conduct falsification tests using samples from the
pre-pandemic period.

As noted in Section 2.3, the health screening period was extended at the end of 2020. If the
effects of this extension are not taken into account, the decline in screening rates attributed to the
pandemic may be overestimated. Specifically, because screenings are typically concentrated toward
the end of the year, the extension may have allowed individuals to avoid the heightened infection
risk during that period. If individuals instead received screening during the extended period, the
decline observed during the regular screening period would overstate the true reduction. Therefore,
we estimate the change in screening rates from 2020 to 2021 relative to the counterfactual screening
rates for individuals eligible in 2020. To do this, we estimate equation 1 for years ¢ and June ¢ + 1,
using the number of individuals screened relative to those eligible in each cohort as the outcome
variable. To avoid contamination from the pandemic period in year ¢ + 1 of the 2019 cohort, we use

the 2016-2018 sample instead.

"We considered alternative functional forms for holidays, including a dummy variable for the presence of any
holiday and categorical dummies based on the number of holidays. Among these, we selected the continuous variable
for the number of holidays, as it yielded the lowest root mean squared error in the counterfactual estimation model.

12



4.1.2 Heterogeneous Responses by Chronic Disease Risk

Chronic disease risk is closely related to both the expected benefits and the costs of undergoing
screening during the pandemic. On the one hand, individuals at higher risk for chronic disease may
benefit more from screening, as it enables earlier detection and management of their conditions. On
the other hand, the health costs of COVID-19 infection are particularly high for these individuals.
For example, those with chronic diseases are known to experience more severe infections and
face a higher risk of death (Centers for Disease Control and Prevention, 2025; Geng et al., 2021).
Therefore, it is ex ante unclear whether high-risk individuals would reduce or maintain screening
uptake during the pandemic, making this an empirical question.

To examine heterogeneity in response to COVID-19, we restrict the sample to individuals with
no health care utilization related to hypertension and diabetes in the past three years. In addition,
we further restrict the sample to individuals who received a health screening within the past one
to two years, for two main reasons. First, biomarkers such as blood pressure and blood glucose are
crucial for predicting chronic disease risk, and this information is only available for individuals
who have received a health screening. Second, excluding individuals who had not received a
screening in recent years helps ensure that any observed change in screening uptake during the
pandemic reflects a response to COVID-19 risk, rather than pre-existing non-participation. The

individual-level analysis uses the following equation:

5
Yi =Bo+ ) B1[RiskQi = j1 X COVID, + BCOVID; + BsYear; + 7y Xy, + €; ()
j=2
where the outcome variable is an indicator that equals 1 if individual i received a screening in year
t through June of ¢ + 1, and O otherwise. 1[RiskQ;; = j] takes the value 1 if the predicted risk

quintile for hypertension or diabetes is j. A detailed description of the risk prediction is provided in

Appendix A.® The variable of interest, COVID, is a dummy variable that equals 1 if the individual

8We estimate logistic regression models to predict the risk of developing hypertension and diabetes. The sample
consists of individuals aged 40 to 79 in 2015 who have no prior health care utilization related to these conditions in
the preceding three years and have received a health screening within the past one to two years. To mitigate overfitting,
we employ 5-fold cross-validation during model training. Model performance is evaluated using AUC values from
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was eligible for screening in 2020, and 0 if they were eligible between 2016 and 2018. A linear year
trend (Year,) is also included. The model controls for individual characteristics (X;;) to account
for changes in health status and age due to the panel structure of the data, as well as changes in
sample composition. The control variables consist of dummy variables for predicted risk quintiles,
demographic characteristics, and screening-related variables (e.g., biomarkers, health behaviors,
family history of chronic disease) from previous screenings, as well as Elixhauser comorbidity
conditions. More details on the control variables are provided in Table Al. Standard errors are

robust to heteroskedasticity.

4.2 Changes in Health Screening Rates
4.2.1 Baseline Results

Figure 1 presents the weekly changes in health screening rates from the counterfactual, calculated
using equation 1. Figure 1(a) shows that the decline in screening rates began around the time
when the first confirmed case of COVID-19 was reported in Korea. During the initial wave of
the pandemic (up to week 14 of 2020—early April), screening rates exhibited a clear dip. The
largest drop occurred at the peak of the outbreak, with screening rates falling by approximately
1 percentage point compared to the counterfactual. As the first wave subsided, the magnitude of
the decline diminished. Nevertheless, a significantly negative change persisted through week 22 of
2020 (late May), with the cumulative decline reaching approximately 9.378 percentage points. In
the weeks that followed, the screening rate exceeded the counterfactual. This pattern is consistent
with intertemporal substitution, whereby individuals who postponed screenings during periods of
heightened uncertainty received them later—when the perceived risk had decreased and the health
care system had adapted. The recovery continued through week 47 of 2020 (in November), with
the cumulative decline narrowing to 4.045 percentage points. However, toward the end of the year,
screening rates declined again, as the number of confirmed cases surged beyond earlier waves and

the government announced an extension of the screening period (week 44). By the end of 2020, the

out-of-sample predictions (Appendix Table A2).
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overall screening rate had fallen by 7.520 percentage points.

Figure 1(b) shows that, unlike in 2020—when screening rates exhibited a clear pattern of decline
and recovery corresponding to shifts in COVID-19 risk—changes in 2021 remained close to zero
throughout the year. Despite the substantially higher number of confirmed cases in 2021 compared
to 2020, the absence of marked deviation may reflect individuals’ psychological adaptation to
COVID-19 risk or pandemic fatigue, resulting in reduced behavioral elasticity in response to
infection risk (Droste & Stock, 2021).° It may also reflect improvements in the management of
COVID-19 risk through infrastructural adaptation (Ha & Kim, 2024). However, as in 2020, the
government announced an extension of the screening period toward the end of 2021, after which
screening rates declined once again. These results suggest that the impact of the pandemic on
screening uptake was largely confined to 2020 and underscore the importance of accounting for the

extended screening period in the analysis.'”

4.2.2 Accounting for the Screening Period Extension

Section 4.2.1 shows that the extension of the screening period contributed to the decline in screening
rates at the end of the year—a period when screenings are typically most concentrated. If individuals
who missed their screenings in 2020 ultimately received them during the extended period, failing
to account for these delayed screenings could lead to an overestimation of the pandemic’s effect.
To address this concern, we extend the analysis window to 2020-2021 for individuals who were
eligible in 2020.

To do so, we estimate equation 1 using the 2016—-2018 cohorts of eligible individuals, with the

number of weekly health screenings from year ¢ through June of 7+ 1 as the outcome variable. Based

9The average number of daily confirmed COVID-19 cases was 1,167.7 in 2020 and 11,048.6 in 2021.

OInterpreting the decline in screening rates observed in 2020 as an effect of the pandemic requires assuming that,
had the pandemic not occurred, screening rates during the same period would have followed the counterfactual trend.
To assess this assumption, we conduct a falsification test using pre-pandemic data from 2018 and 2019. If the decline
in screening uptake is truly attributable to the pandemic, no systematic deviation from the counterfactual should appear
during the pre-pandemic period. Appendix Figure A3 presents changes in screening rates relative to the counterfactual,
obtained by estimating equation 1 using the sample from the past three years. Figures A3(a) and A3(b) show the results
for the 2018 and 2019 samples, respectively. While some changes are statistically significant, they exhibit no systematic
pattern and remain generally close to zero. These results support the interpretation that the decline in screening uptake
observed in 2020 reflects the impact of the pandemic.
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on this model, we calculate the counterfactual rates for individuals eligible in 2020 and measure
the deviation between the actual and counterfactual rates over the 2020-2021 period.

As shown in Figure 2, the results are similar to those presented in Section 4.2.1. At the end
of 2020, screening rates declined sharply following the announcement of the screening period
extension. In 2021, screening rates rose above the counterfactual and increased steadily until the
end of June, when the extended period ended, resulting in a cumulative change of 0.888 percentage
points during weeks 53—78 and —5.680 percentage points overall (until week 78). However, it remains
unclear whether the extension mitigated the decline in screening rates caused by the pandemic. Its
effectiveness depends on both the anticipatory effect of the extension and the increase in screenings
during the extended period. Unfortunately, the anticipatory effect cannot be separately identified
from individuals’ responses to the pandemic itself. Nevertheless, accounting for the extended period

helps mitigate the overestimation of the pandemic’s effect.

4.2.3 Response to COVID-19 by Predicted Chronic Disease Risk

Figure 3 plots ,6’{ from equation 2 across quintiles of predicted risk for chronic diseases.'! In
Figure 3(a), we observe that as the predicted risk for hypertension increases, the probability of
receiving a health screening decreases more sharply relative to the first quintile. Specifically, while
the reference group (1st quintile) shows a decline of 4.38 percentage points, the probability of
screening decreases by an additional 0.9 percentage points in the 2nd quintile (approximately
20% of the effect for the reference group) and by 2.30 percentage points in the Sth quintile
(approximately 53%). It is important to note, however, that while the interaction terms for each
quintile are statistically significant, the confidence intervals across groups overlap. A qualitatively
similar pattern is observed in Figure 3(b), which examines heterogeneity based on predicted risk
for diabetes. However, the between-group differences are smaller in magnitude compared to those
observed for hypertension. Taken together, these results suggest that individuals at higher risk for

chronic disease experienced greater reductions in screening rates during the pandemic.

Baseline estimates from the individual-level analysis that do not allow for differences in responses by chronic
disease risk are presented in Appendix Table A3.
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While potential risks are relatively easy to interpret, further insight into the patterns observed
in Figure 3 can be gained by examining differences in the specific predictors used to estimate these
risks. To this end, we first convert the predictors into simplified categorical variables to facilitate
the presentation of results. Next, we calculate the average potential risk for each group. Finally, we
estimate the decline in the probability of screening by allowing the effect of the pandemic to vary
with each predictor of interest.

Figure 4 presents the predicted risk of hypertension for each group alongside the corresponding
decline in the probability of screening. Figure 4(a) displays the results of the heterogeneity analysis
based on demographic variables, showing that the probability of screening tends to decline more
among higher-risk groups. Notably, elderly individuals (aged 60 or older) and medical aid benefi-
ciaries experience a marked decline despite their elevated risk of hypertension. Figure 4(b) presents
the results based on information from past screenings. Again, we observe a clear decline in the
probability of screening among higher-risk groups. In particular, individuals identified as at-risk
based on biomarkers—such as BMI, fasting blood glucose (Glu.), and blood pressure (BP)—are
less likely to receive screening, despite their heightened health risk. Similar patterns are observed
when the same analysis is conducted using diabetes risk (Appendix Figure A4).

In the context of Korea, where strict quarantine policies—such as mobility restrictions—were
not implemented, the results in this section suggest that voluntary responses to the COVID-19

pandemic reduced screening among those most likely to benefit from it.

5 Health Screening and Chronic Disease Management During

the COVID-19 Pandemic

In this section, we analyze how delays in health screening during the COVID-19 pandemic affected
the initiation of health care utilization related to hypertension and diabetes. This question is par-
ticularly relevant for two reasons. First, it allows us to quantify the cost of voluntary responses to

the pandemic, which is meaningful in itself, as it captures the health consequences of individuals’
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decisions in response to infection risk. Second, it helps us understand whether the reduction in
screening disproportionately affected individuals who were most likely to benefit from it. As shown
in Section 4.2.3, the decline in screening rates during the pandemic was greater among those at
higher risk for chronic diseases. According to the performance comparison of the risk prediction
models, biomarkers collected from prior health screenings—such as blood pressure, blood glucose,
and BMI—play a critical role in predicting chronic disease risk (Appendix Table A2). Importantly,
this information is also observable to individuals themselves. Therefore, despite the greater re-
duction in screening observed among high-risk individuals, they may have relied on previously

available information to manage their chronic disease.

5.1 Empirical Approach
5.1.1 Propensity Score Matching

Our main interest lies in the cost associated with reduced screening rates during the pandemic. Given
this objective, our target estimand is the ATU. In the context of this study, the ATU represents how
the outcome would have changed if individuals who did not receive a health screening had received

one.!? Specifically, the ATU is defined as follows:

tary = E[t | D=0l =E[Y(1) | D=0] - E[Y(0) | D = 0] 3)

where 7 is the treatment effect; D denotes the treatment—in this case, health screening—and Y (1)
and Y (0) are the potential outcomes of receiving and not receiving the treatment, respectively.'?
We cannot observe E[Y (1) | D = 0] in equation 3—that is, the potential outcome for individuals

who did not receive a health screening, had they received one. What we do observe in the data are

12This section follows Cunningham (2021) and Shin (2022).
13Based on the results in Section 4.2.2, individuals who received a health screening between January 2020 and June
2021 are classified as treated, while those who did not are classified as untreated.
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E[Y(1) | D =1] and E[Y(0) | D = 0]. When we compare these two observable outcomes:

E[Y(1) [ D=1]-E[Y(0) | D =0] = tary +{E[Y(1) | D =1] - E[Y(1) [ D = 0]} (4)

IfE[Y(1) | D=1]-E[Y(1) | D =0] # 0, the ATU estimate will be biased due to selection.
Because individuals can choose whether to receive a health screening, systematic differences may
exist between those who were screened during the pandemic and those who were not. These
differences may include health status, prior health care utilization, health behaviors, and other
factors that influence chronic disease risk. Therefore, the selection bias term is expected to be
non-zero. '

Propensity score matching can be used to estimate the ATU under two identifying assump-
tions. The first is the conditional independence assumption, which implies that, conditional on the
propensity score, treatment assignment is as good as random. Although this assumption is inher-
ently untestable, we argue that it is plausible in our setting, as propensity score matching balances a
rich set of covariates related to health screening and chronic disease between treated and untreated
individuals. The second assumption is common support, which requires that, for each value of the
propensity score, there exist both treated and untreated individuals. To assess whether this condition
is met, we examine the overlap in the distribution of propensity scores between the two groups.

There are two key considerations in selecting covariates for estimating the propensity score.
First, following Heckman and Navarro-Lozano (2004), we include covariates that are strongly
correlated with the outcome variables—namely, hypertension and diabetes. Second, as emphasized
by Caliendo and Kopeinig (2008), only covariates that are not affected by the treatment should be
used in estimating the propensity score. Taken together, these considerations support the use of the
covariates employed in our risk prediction model for propensity score matching. These covariates are

highly predictive of hypertension and diabetes, as demonstrated by model performance (Appendix

14 According to Appendix Tables A4, individuals who did not receive a health screening tend to have a higher
average risk of chronic disease. Therefore, if these individuals had received a screening, their health care utilization
related to chronic disease would likely have been higher than that of those who were actually screened. In this case, the
direction of selection bias would be negative.
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Table A2), and are measured prior to the receipt of health screening.

Next, we describe the matching algorithm used in our analysis. We employ 1:4 nearest neighbor
matching, in which each individual in the reference group—the untreated in the ATU framework—is
matched to the four treated individuals with the closest propensity scores. Because the number
of treated individuals exceeds that of untreated individuals, we allow for replacement to avoid
sensitivity to the ordering of observations. To restrict the matching distance, we apply a caliper
of 0.2 standard deviations of the propensity score, following Austin (2011). Standard errors are
computed using the method proposed by Abadie and Imbens (2006).

Reverse causality between health screening and health care utilization for chronic conditions is a
potential concern. Specifically, if an individual initiates health care use for a chronic condition prior
to receiving a screening, the incentive to undergo screening may diminish, reducing the likelihood
of uptake (Appendix Figure AS). In such cases, the estimated effect of health screening may be
downward biased. To address this concern, we adopt two strategies. First, we exclude individuals
whose health care utilization began before the month of their screening. For untreated individuals,
we exclude those whose health care use began before the month of their previous screening.!”
Second, we include the month of the previous screening as a matching covariate. Individuals
screened later in the year have more time for chronic conditions to naturally emerge. Therefore,
matching on the month of the previous screening enables comparisons across groups with similar

probabilities of natural disease onset.

5.1.2 Event Study

Complementing the propensity score matching, we employ an event study approach that exploits
variation in both the timing and receipt of health screenings across individuals. This approach
addresses concerns that PSM, while carefully balancing observed characteristics, may still be
subject to residual selection. For instance, while the chronic disease risk factors included in the

matching procedure capture actual vulnerability to COVID-19, they do not necessarily align with

15Tn the 2016—-2019 sample of individuals who received a screening, Appendix Figure A6 shows a strong association
between the timing of the previous screening (1-2 years earlier) and that of the current screening.
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individuals’ perceived risk of infection. Moreover, other unobserved sources of heterogeneity may
persist. The event study enhances credibility by examining dynamic changes in care initiation
around the screening month. It allows us to test for pre-trends and conduct placebo analyses. These
exercises assess whether any remaining source of selection systematically affected the treated and
untreated groups. For this analysis, we transform the sample used for propensity score matching

into individual-month-level data.'® We then estimate the following model:

Yi=Po+ Y Blllt—1; = jl+¥Xi+7 +e 5)

where 7 indexes individuals and ¢ denotes year-months. We estimate the model using two types of
outcome variables (Y¥;;): a dummy variable for the initiation of health care use and a count variable
for the number of such uses, each defined separately for hypertension and diabetes. 17 — ¢ = j]
is a dummy variable that equals 1 if j months have passed since the health screening. One month
prior to screening (f = —1) is used as the reference period; thus, ,8'{ captures the change in the
outcome relative to this baseline. To control for individual characteristics associated with health
care utilization, we include X;, which consists of the same covariates used in equation 2. 7; denotes
year-month fixed effects. Standard errors are clustered at the individual level.

The coeflicient of interest, ,Bj , in equation 5 captures the causal effect of screening, under the
assumption that the outcome variables would have followed a smooth trend over time in the absence
of screening. To support the validity of this assumption, we provide two pieces of evidence. First,
the estimated coefficients ﬁ{ are close to zero during the pre-screening period. Second, we conduct
a placebo test by assigning a false screening month to untreated individuals, matching them to
treated counterparts using propensity scores. Since we use 1:4 nearest neighbor matching, the false

screening month is randomly drawn from one of the four matched treated individuals.

16For a balanced sample, the observation period is limited to 12 months before and 6 months after the health
screening.
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5.2 Effects of Health Screening on Chronic Disease Care
5.2.1 Matching Details

We begin by assessing the validity of the common support assumption through a visual inspection of
the propensity score distribution (Figure 5(a)). As expected, the distribution for the untreated group
is somewhat more concentrated at lower values of the propensity score. A common approach to
evaluating the common support assumption is to compare the minimum and maximum propensity
scores across groups (Caliendo & Kopeinig, 2008). This involves removing observations whose
scores fall outside the range of the opposite group. Applying this criterion results in the exclusion
of only two treated individuals.

Next, we assess whether the matching procedure effectively balances covariates between indi-
viduals who received health screenings and those who did not. To do so, we use the standardized
bias measure proposed by Rosenbaum and Rubin (1985):

X0y 100 (6)
(sl.z1 + Sizo) /2
where ;1 and X;o denote the means of covariate i in the treated and untreated groups, respectively,
and s;1 and s;0 are their corresponding standard deviations.

Although there is no theoretical justification for this threshold, it is conventionally accepted
that an absolute standardized difference greater than 20 is considered too large (Shin, 2022). The
differences in covariates between the treated and untreated groups, observed before matching, are
substantially reduced after matching and fall well below the 20% threshold (Figure 5(b)). These
results suggest that the assumption of conditional independence is likely to hold, given that rich
covariates related to chronic disease care are used in the matching process and are successfully

balanced.
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5.2.2 PSM Estimates

Table 2 presents estimates of the average treatment effect of health screening on health care
utilization related to chronic diseases among the untreated. According to the baseline model,
receiving a health screening increases the probability of initiating hypertension-related care by
2.58 percentage points, corresponding to approximately 35% of the untreated group mean. The
number of care visits also increases by 0.217, or about 46% of the untreated mean. For diabetes,
the probability of initiating care increases by 2.42 percentage points, and the number of visits
increases by 0.098—equivalent to 35% and 41% of the untreated group mean, respectively.!” To
address potential reverse causality, Model (2) excludes individuals whose health care use for the
relevant condition began before the screening month. Model (3) includes the month of the previous
screening as a matching covariate. The results remain robust to both alternative approaches.

These estimates reflect two channels through which health screenings affect health care utiliza-
tion. First, screenings increase contact with health care providers. Providers may bill for same-day
visits if they deliver additional medical services—such as diagnoses or prescriptions—beyond
the screening itself. Second, information conveyed through screenings may influence subsequent
health care utilization (Iizuka et al., 2021; H. B. Kim et al., 2019; Oster, 2018b; Zhao et al., 2013).
This informational channel is particularly relevant for individuals whose screening results indicate
elevated health risks. Given that the sample in this section includes individuals with biomarkers
exceeding diagnostic thresholds, this mechanism is also likely to be at play.

Studies examining the effects of health screenings on health care utilization and outcomes
have primarily used regression discontinuity designs that exploit diagnosis cutoffs, making their
estimates not directly comparable to ours. Nevertheless, for reference, lizuka et al. (2021) analyze
health care utilization in the context of diabetes and report increases of 4.7 percentage points at the
alert cutoff (fasting glucose of 110 mg/dL) and 4.0 percentage points at the risk cutoff (126 mg/dL).

These estimates are relatively larger than ours, which is expected, as theirs reflect local effects

17 Appendix Figure A7 shows robustness to varying the number of matched neighbors (1 to 8) and using matching
without ties. These specifications yield results consistent with the baseline estimates.
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around specific thresholds, while ours represent ATU without restricting the sample to high-risk

individuals based on fasting glucose levels.

5.2.3 Event Study Results

Figure 6 presents the estimated coeflicients from equation 5. Figures 6(a) and 6(b) focus on
hypertension. We estimate changes in care initiation and the number of care visits following
screening, using a sample of individuals with no prior use of care for hypertension and diabetes in
the past three years. The probability of care initiation increases by approximately 1.14 percentage
points immediately after screening, then drops sharply. The number of care visits also rises by
0.019 in the month of screening and slightly declines thereafter, though it remains elevated. In
contrast, the untreated group shows no meaningful changes before and after the false screening
month. Figures 6(c) and 6(d) present analogous results for diabetes-related health care utilization.'®
These event study results yield two key implications. First, they reinforce the causal interpreta-

tion of the health screening effects estimated using propensity score matching. Second, they suggest

that missed screenings disrupted not only the initiation of care but also continued management.

5.3 Effects of Health Screening by Predicted Chronic Disease Risk

Chronic diseases tend to progress gradually, suggesting that health screenings may have larger
effects for individuals at higher risk of developing these conditions. In this section, we examine
whether the effects of health screenings differ by chronic disease risk. Specifically, we divide the
sample into quintiles based on predicted risk for hypertension and diabetes, and estimate the ATU

within each quintile using propensity score matching.

18 Additionally, we employ the Interaction-Weighted (IW) estimator following Sun and Abraham (2021), which
accounts for heterogeneous treatment timing, as individuals differ in the month they received screening. For this
analysis, we combine the treated and untreated groups into a single sample. Following the implementation of the IW
estimator in Sun and Abraham (2021), untreated individuals—who never received a screening—are included as the
control group. Because no screening month is defined for these individuals, all event time dummies (leads and lags)
are equal to zero, allowing them to serve as the baseline cohort in the estimation. We then estimate the effect using a
two-way fixed effects model and the IW estimator. The results are nearly identical to the baseline findings (Appendix
Figure A8).
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Estimates using the whole sample mask substantial heterogeneity. Figure 7(a) shows that the
magnitude of the estimates increases markedly with risk level. In the lowest risk quintile (Q1), the
probability of initiating hypertension-related care increases by approximately 0.4 percentage points
when the untreated group receives a health screening. However, this estimate is not statistically
significant at the 95% confidence level, and a similar result is observed in Q2. From Q3 to QS5,
the ATU estimates rise steeply, reaching 6.9 percentage points in Q5—equivalent to approximately
43%% of the untreated group mean. A comparable gradient is observed in Figure 7(b) for the number
of care visits. Figures 7(c) and 7(d) display qualitatively consistent patterns for diabetes-related
outcomes.

When considered alongside the results in Section 4.2.3, which show a greater decline in the
probability of screening among individuals at higher risk for chronic disease, these findings suggest
that voluntary responses to COVID-19 disproportionately harmed those most likely to benefit from

health screening.

5.4 Health Consequences of Delay in Care Initiation

In the previous analyses, we showed that screening increased the likelihood of initiating care
for chronic conditions. A relevant follow-up question is whether screening also facilitated earlier
detection—specifically, whether untreated individuals began care at a more advanced stage of
disease. To address this, we examine the presence of complications associated with hypertension
and diabetes, respectively.

Table 3 reports the effects of health screening on the presence of chronic disease complications
among new health care users. In the baseline model, receiving a health screening would have reduced
the probability of initiating hypertension-related care with complications by 5.72 percentage points,
equivalent to approximately 20% of the untreated group mean. This effect is statistically significant.
Similarly, for diabetes, the probability of initiating care with complications would have decreased

by 2.94 percentage points, or about 13% of the untreated group mean.!” As in Table 2, which

"Matching details for the baseline model are provided in Appendix Figure A9. The results support the common
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examines the effects of screening on care initiation, we address the issue of reverse causality here
as well. Model (2) excludes individuals who began health care for hypertension or diabetes before
screening. Model (3) includes the timing of the previous screening as a matching covariate. The
results are robust across both specifications.

This study analyzes the effects of screening within a two-year observation window. While this
period is relatively short given the typically long asymptomatic course of chronic diseases, prior
research highlights the importance of early detection. For instance, in the case of diabetes, the time
from disease onset to diagnosis can range from four to seven years (Harris et al., 1992). Nonethe-
less, timely diagnosis and initiation of lifestyle or pharmacological interventions can substantially
improve outcomes. Harris and Eastman (2000) emphasize that diabetes-related complications may
advance significantly during the undiagnosed period, underscoring the value of screening. Even a
one-year delay in treatment intensification can elevate the risk of complications, including cardio-
vascular events (Reach et al., 2017). Similarly, early detection and treatment of hypertension are
critical. Martin-Fernandez et al. (2019) show that all-cause mortality increases markedly when the
interval between diagnosis and blood pressure control exceeds 125 days. Although our results are
not directly comparable to these studies due to the shorter follow-up period, the findings in Table 3
suggest that, had the untreated group been screened, chronic disease management may have begun

at a less severe stage.

6 Conclusion

This study provides a comprehensive analysis of how individuals’ voluntary responses to the
COVID-19 pandemic influenced general health screening, a key component of preventive health
care. Using a modified interrupted time series approach, we find that participation among eligible
individuals declined substantially in 2020, the first year of the pandemic. The richness of the NHIS

data allows us to move beyond aggregate patterns and examine heterogeneity in responses based on

support assumption and indicate that covariate imbalance is eliminated after matching. Similar findings hold for Models
(2) and (3); results available upon request.
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individuals’ predicted risk of chronic disease. We find that screening participation declined more
sharply among those at higher risk without prior diagnoses of hypertension and diabetes, suggesting
greater reductions among those most likely to benefit.

We next examine how reduced screening participation during the pandemic affected chronic
disease management. Our findings show that individuals who missed screenings in 2020 would have
been more likely to initiate care for hypertension and diabetes if they had received screening. Delays
in disease management can lead to deterioration in health. Specifically, individuals who missed
screenings were more likely to present with hypertension- and diabetes-related complications when
initiating care. Based on our estimates, reduced screening in 2020 led to approximately 262 missed
hypertension cases and 246 missed diabetes cases in our sample. Given that the sample represents
roughly 4% of the national population, this implies approximately 6,550 missed hypertension cases
and 6,144 missed diabetes cases nationwide.?? These missed cases are estimated to have resulted
in approximately 373 cases of hypertension and 178 cases of diabetes, both with complications.?!

Our study points to a broader implication for health policy: even in the absence of strict
quarantine policies, individuals’ voluntary responses to infection risk can reduce the uptake of
preventive care and, ultimately, worsen health outcomes. Importantly, depending on the nature
of the infectious disease, those who are most likely to benefit from preventive care may exhibit
the largest declines in utilization. These findings underscore the need for active public health

interventions to sustain preventive care during health crises.

20We performed a back-of-the-envelope calculation, multiplying the number of eligible individuals by the esti-
mated reduction in screening participation during the pandemic (0.0511) and the ATU for care initiation (0.0258 for
hypertension, 0.0242 for diabetes). While these figures illustrate the costs of missed screenings, we do not attempt a
formal cost—benefit calculation. Reliable hazard estimates linking diagnostic delays to health outcomes are scarce. Any
net-impact calculation would therefore hinge on unverifiable assumptions about the functional relationship between
diagnostic delay and disease progression. To avoid over-interpretation, we refrain from speculative monetization.

21 Applying the estimated ATU for complications to the counterfactual group of missed cases requires the assumption
that, in terms of disease progression, these individuals resemble those who initiated care without screening during
the observation window. This assumption can be challenged in both directions. On the one hand, missed cases may
present with more advanced disease due to longer delays, in which case the effect of screening would be larger in this
group than in our study sample. On the other hand, they may exhibit lower severity due to weaker symptoms or slower
disease progression that did not yet necessitate care, in which case the screening effect in this group would be smaller
than in our study sample. For this reason, the calculation is not intended to provide a point estimate of complications
that could have been mitigated. Instead, it serves to illustrate the potential scale of health consequences arising from
reduced screening participation.
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While our findings benefit from the institutional setting of Korea’s National Screening Pro-
gram—characterized by universal coverage, zero cost, and high accessibility—this context also
limits external validity. The results are particularly relevant to health systems with national screen-
ing programs, such as those in England and Japan (Fujimaru et al., 2019; Tanner et al., 2022).
By contrast, in countries with greater cost-sharing and more fragmented access, the pandemic’s
impact on screening participation and chronic disease management may differ both in magnitude
and in mechanism. Our findings are therefore specific to settings with minimal barriers to care and

underscore the need for further research on less supportive systems.
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Figures

Figure 1: Change in Health Screening Rates During the COVID-19 Pandemic
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Notes: Figures 1(a) and 1(b) show weekly changes in health screening rates relative to the counterfactual for
2020 and 2021, respectively, along with 95% confidence intervals. The counterfactual values are derived by
fitting equation 1 to data from 2017 to 2019. Gray bars indicate the number of newly confirmed COVID-19
cases per week, and vertical dashed lines mark the week when the screening period extension was announced.
In Figure 1(a), cumulative reductions in screening rates amount to 9.378 percentage points by week 22 (end
of the first-wave decline), 4.045 by week 47 (end of the recovery), and 7.520 by week 52 (year-end). Standard
errors are robust to heteroskedasticity. Source of COVID-19 case data: World Health Organization and
Various sources (2025).
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Figure 2: Change in Health Screening Rates for 2020 Cohort with Extended Screening Period
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Notes: Figure 2 shows weekly changes in health screening rates in 2020 relative to the counterfactual
rates, along with 95% confidence intervals. Vertical dashed lines mark the week when the screening period
extension was announced. The counterfactuals are estimated by fitting equation 1 to weekly data from the
2016-2018 cohorts, tracking screening uptake from the eligible year through June of the following year. The
cumulative reduction in screening rates reached —6.568 percentage points by week 52. During the extended
screening period (shaded area), screening rates increased by 0.888 percentage points, resulting in a total
reduction of 5.680 percentage points by week 78. Standard errors are robust to heteroskedasticity.
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Figure 3: Heterogeneous Responses by Predicted Chronic Disease Risks

(a): By hypertension risk quintile (b): By diabetes risk quintile
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Notes: We estimate equation 2 using a sample of individuals who received a health screening within the
past one to two years and had no health care utilization for either hypertension and diabetes in the previous
three years. The outcome variable equals 1 if the individual received a screening between year ¢ and June
of year ¢ + 1. Figures 3(a) and 3(b) present the estimated coefficients, allowing the change in the probability
of receiving a screening during the pandemic to vary across quintiles of predicted risk for hypertension and
diabetes, respectively. The method used to construct the predicted risk is described in Appendix A. The first
quintile serves as the reference group and is omitted from the figures. The estimated decrease in screening
probability for the reference group (first quintile) is —0.0385 for hypertension and —0.0438 for diabetes.
Standard errors are robust to heteroskedasticity.
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Figure 4: Breakdown by Variables Used in Risk Prediction (Hypertension)

(a): Demographic variables
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Notes: Figure 4 shows the results of a heterogeneity analysis based on the variables used to predict hyperten-
sion risk. For each variable, we estimate equation 2, allowing the effect of the pandemic on the probability
of receiving a screening to vary across groups. The horizontal axis represents the average predicted risk
for each group, and the vertical axis indicates the estimated change in screening probability during the
pandemic, relative to the pre-pandemic period. For presentation purposes, the original variables used in the
risk prediction model (see Appendix Table A1) are grouped into simplified categories. The size of each circle
is proportional to the sample size of the corresponding group.
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Figure 5: Validity of Propensity Score Matching

(a): Distribution of propensity score
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Notes: Figure 5(a) shows the distribution of propensity scores for the treated and untreated groups. Following
Caliendo and Kopeinig (2008), we assess the common support assumption by comparing the minimum and
maximum values of the propensity score distributions across groups. The matched sample includes 172,508
treated individuals (2 excluded due to lack of common support) and 26,212 untreated individuals (none
excluded). Figure 5(b) presents the standardized bias of covariates before and after matching. Matching was
performed using the psmatch2 module in Stata. Because the number of covariates exceeds 30, variable
names are not labeled in the plot due to program limitations.
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Figure 6: Effects of Screening on Health care Use: Event Study Results
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Notes: Figure 6 presents estimates from equation 5, illustrating how health care utilization evolves before and
after screening. For the untreated group, a false screening month is assigned by randomly selecting one of four
treated individuals matched through propensity score matching. Figures 6(a) and 6(b) use Care initiation
(a dummy variable indicating the first instance of health care use) and Number of care visits (the total
number of hypertension-related visits) as outcome variables. Figures 6(c) and 6(d) present analogous results
for diabetes-related health care utilization. Standard errors are clustered at the individual level.
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Figure 7: Heterogeneous Effects of Health Screening by Chronic Disease Risk
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Notes: Figure 7 presents average treatment effect on the untreated (ATU) estimates from propensity score
matching, stratified by quintiles of predicted risk for hypertension and diabetes. The outcome variable,
Care initiation, is a dummy equal to 1 if the individual used any health care related to the respective
condition, and O otherwise. Number of care visits refers to the total number of such visits. Outcome
variables are measured using medical claims data from 2020 to 2021. Figures 7(a) and 7(b) show results
for hypertension-related health care use, and Figures 7(c) and 7(d) present the corresponding results for
diabetes. The method for constructing predicted risk is described in Appendix A. Standard errors are
calculated following Abadie and Imbens (2006).
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Tables

Table 1: Summary of Sample Construction

Section

Sample construction

Unit of analysis

Outcome variable

Section 4. Changes in Health
Screening Rates During
the COVID-19 Pandemic

- Eligible individuals for health screening,
aged 40 to under 80 years
- Sample period: 2016-2021

National-level

Number of screenings per
100 eligible individuals

- Eligible individuals for health screening,
aged 40 to under 80 years

- Excluding those who utilized health care
for hypertension and diabetes in the past
three years

- Restricted to those who received a health
screening within the past two years

- Sample period: 2016-2021

Individual-level

Dummy variable for
receiving a health screening

Section 5. Health Screening and
Chronic Disease Management
During the COVID-19 Pandemic

- Based on the individual-level sample in
Section 4
- Restricted to the 20202021 period

Individual-level

Utilization of health care for:
1) hypertension or diabetes
2) related complications
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Appendix

A Risk Prediction

Risk prediction models for hypertension and diabetes typically incorporate a wide range of variables,
including biomarkers (e.g., blood pressure and fasting glucose), health behaviors, and family history
of these conditions (Collins et al., 2011; Nusinovici et al., 2020; D. Sun et al., 2017). Since the
National Health Insurance Service (NHIS) collects detailed health screening data, our dataset
includes many of the key predictors commonly used in the existing literature.

The variables included in our prediction model are summarized in Table A1. We begin with
demographic variables: age group (in 5-year intervals), sex, insurance premium (in 20th percentiles),
and type of health insurance. The health screening database additionally provides information on
biomarkers (BMI, waist circumference, blood pressure, and fasting blood glucose), health behaviors
(alcohol consumption, smoking, and physical activity), and family history of chronic diseases.
Biomarkers are categorized based on clinical diagnostic criteria. We also incorporate health care
utilization related to Elixhauser comorbidity conditions into the model (Khan et al., 2018; Uddin
et al., 2022).

Logit models perform comparably to machine learning approaches in predicting chronic disease
risk (Nusinovici et al., 2020). Accordingly, we use logit models to predict the risk of hypertension
and diabetes. The outcome variable is a dummy equal to 1 if an individual initiates health care
utilization for hypertension or diabetes as the primary condition in a given year, and 0 otherwise.
The model is estimated using a sample of individuals aged 40 to 79 in 2015 who (i) had no prior
health care utilization related to hypertension and diabetes in the preceding three years, and (ii)
had received a health screening within the past one to two years. We sequentially add groups
of predictors. To evaluate model performance, we compare the area under the receiver operating
characteristic curve (AUC) across specifications. To guard against overfitting, we use 5-fold cross-
validation during model training. The dataset is randomly partitioned into five folds, with each fold

serving once as the test set and the remaining four used for training. The AUC values reported in
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Table A2 reflect the out-of-sample performance, averaged across folds.

Table A2 reports the AUC for each specification. Columns (1) to (5) sequentially add groups of
predictors. Notably, the inclusion of biomarkers in Column (2) leads to a substantial improvement
in AUC. The subsequent addition of health behaviors, family history, and Elixhauser comorbidity
conditions in Columns (3) to (5) yields incremental gains in model performance. In Columns (6)
and (7), comorbidity conditions are constructed using information from the past two and three
years, respectively. Column (7), which yields the highest AUC, is used in the heterogeneity analysis

by chronic disease risk level.
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B Figures

Figure Al: COVID-19 Pandemic and Unmet Health care Need

(a): Status of Unmet Health care Needs

Yes

No

Don't know or no response

§

I pre-Pandemic
Pandemic

0 2 4 6 8 1

Fraction
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Notes: Figure Al(a) reports the share of individuals who reported needing but not receiving health care in the
past year. Figure A1(b) presents the main reasons cited for foregoing care. All proportions are weighted using
survey sampling weights. The analysis uses data from the Korea National Health and Nutrition Examination
Survey (KNHANES) for the years 2017 to 2021, restricted to individuals aged 40 to 79. The pre-pandemic
period is defined as 2017-2019, and the pandemic period as 2020-2021.

45



Figure A2: Trends in Health Screening Rates
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Notes: Figure A2 presents annual trends in the proportion of eligible individuals aged 40 to 79 who received
a health screening.
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Figure A3: Falsification Test Using Pre-Pandemic Samples

(a): Sample from 2018
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Notes: Figures A3(a) and A3(b) show weekly changes in health screening rates relative to the counterfactual
for 2018 and 2019, respectively, along with 95% confidence intervals. The counterfactual values are estimated
by fitting equation 1 to data from the preceding three years for each corresponding year (i.e., 2015-2017 for
2018, and 20162018 for 2019). Standard errors are robust to heteroskedasticity.
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Figure A4: Breakdown by Variables Used in Risk Prediction (Diabetes)

Estimate

Estimate

Notes: Figure A4 shows the results of a heterogeneity analysis based on the variables used to predict diabetes
risk. For each variable, we estimate equation 2, allowing the effect of the pandemic on the probability
of receiving a screening to vary across groups. The horizontal axis represents the average predicted risk
for each group, and the vertical axis indicates the estimated change in screening probability during the
pandemic, relative to the pre-pandemic period. For presentation purposes, the original variables used in the
risk prediction model (see Appendix Table A1) are grouped into simplified categories. The size of each circle
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is proportional to the sample size of the corresponding group.
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Figure A5: Health Screening Rates by Care Initiation Status for Chronic Diseases

Difference
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Notes: Figure AS presents differences in screening rates during the designated screening period between
individuals who initiated health care for hypertension or diabetes and those who did not, conditional on not
having received a screening by each calendar month. The analysis uses pre-pandemic data from 2016 to 2019
and focuses on individuals aged 40 to 79 who had received a screening within the past one to two years and
had no health care use related to hypertension and diabetes in the preceding three years.
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Figure A6: Tabulation of Screening Months in Current and Prior Years
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Notes: Figure A6 presents a tabulation of individuals’ screening months, comparing the month of screening
in the current year with that in the previous one to two years. The analysis uses data from individuals aged
40 to 79 who received health screenings between 2016 and 2019, restricted to those who had undergone a
screening within the past one to two years and had no health care use related to hypertension and diabetes in
the preceding three years.
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Figure A7: Robustness of ATU Estimates on Health care Use
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Notes: Figure A7 presents average treatment effect on the untreated (ATU) estimates from propensity score
matching, with 95% confidence intervals. The variable Care initiation is adummy equal to 1 if the individual
used health care for the respective condition (hypertension or diabetes), while Number of care visits
denotes the total number of such visits. Outcomes are measured using medical claims data from 2020 to
2021. The baseline specification uses four nearest neighbors and allows for matching with all ties. The group
labeled “Number of neighbors” presents estimates obtained by varying the number of neighbors from 1 to
8. The estimate labeled “Excluding ties” is based on matching exactly four neighbors while excluding ties.
Standard errors are calculated using the method of Abadie and Imbens (2006).
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Figure A8: Comparing Screening Effects: TWFE Model vs. IW Estimator
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Notes: Figure A8 presents estimates from a two-way fixed effects (TWFE) model and the interaction-weighted
(IW) estimator, following L. Sun and Abraham (2021), to compare changes in health care utilization before
and after screening. Since no screening month is defined for the untreated group, all event time dummies
(leads and lags) are equal to zero, allowing this group to serve as the baseline cohort in the estimation. Figures
A8(a) and A8(b) use Care initiation (a dummy variable equal to 1 if the individual initiated health care
use) and Number of care visits (the total number of hypertension-related visits) as dependent variables.
Figures A8(c) and A8(d) show the same analysis for diabetes-related health care utilization. Standard errors
are clustered at the individual level.
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Figure A9: Validity of Propensity Score Matching (Section 5.4)

Distribution of propensity score
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Notes: Figure A9(a) shows the distribution of propensity scores for the treated and untreated groups used
in the baseline matching for Table 3. Following Caliendo and Kopeinig (2008), we assess the common
support assumption by comparing the minimum and maximum values of the propensity score distributions
across groups. The matched sample includes 15,097 treated individuals (20 excluded due to lack of common
support) and 1,921 untreated individuals (1 excluded). Figure A9(b) shows the same assessment for diabetes
sample, consisting of 14,909 treated individuals (37 excluded) and 1,815 untreated individuals (2 excluded).
Figures A9(c) and A9(d) present the standardized bias of covariates before and after matching. Matching
was performed using the psmatch2 module in Stata. Because the number of covariates exceeds 30, variable
names are not labeled in the plot due to program limitations.
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Tables

Table A1l: List of Variables Used in Risk Prediction

Category

Variable

Description

Outcome variable

Health care use related to

hypertension, diabetes

Dummy variable indicating health care utilization
with hypertension or diabetes as the primary diagnosis

Demographic variable

Age

Dummy variables for age groups in 5-year intervals

Health insurance premium

Dummy variables for each of the 21 groups, composed of
20 insurance premium quintiles and medical aid recipients

Health insurance type

Dummy variable representing employee subscribers

Sex

Dummy variable equal to 1 for females

Past health screening

BMI

Dummy variables for underweight, normal, cautious, and
suspected obesity

Waist circumference

Dummy variables for normal and suspected abdominal obesity

Fasting blood sugar

Dummy variables for normal, cautious, and suspected diabetes

Blood pressure

Dummy variables for normal, cautious, and suspected hypertension

Physical activity

Dummy variable indicating the need for physical activity

Smoking

Dummy variable indicating the need for smoking cessation

Alcohol consumption

Dummy variable indicating the need for abstaining from alcohol

Family history of
hypertension, diabetes

Dummy variable indicating a family history of hypertension, diabetes

Elixhauser Comorbidity Condition

27 disease groups

Dummy variables indicating health care utilization due to the
respective condition
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Table A2: Comparison of Prediction Model Performance

ey 2 3) “4) ®) (6) )

Panel A: hypertension

AUC 0.6356 0.7864 0.7869 0.7892 0.7906 0.7909 0.7911
Panel B: diabetes

AUC 0.6339 0.8148 0.8150 0.8178 0.8219 0.8247 0.8254
Predictors:

Demographics Y Y Y Y Y Y Y
Biomarkers Y Y Y Y Y Y
Health behavior Y Y Y Y Y
Family history Y Y Y Y
Elixhauser comorbidity - 1 year Y

=

Elixhauser comorbidity - 2 years
Elixhauser comorbidity - 3 years Y

Notes: Table A2 reports the area under the receiver operating characteristic curve (AUC) from prediction
models estimating the initiation of health care utilization for hypertension (Panel A) and diabetes (Panel B).
The outcome variable is a dummy equal to 1 if an individual initiated health care use for the corresponding
condition as the primary condition in a given year, and 0 otherwise. The models are estimated using logistic
regression, with AUC values computed based on 5-fold cross-validation. Each column incrementally adds a
group of predictors, including demographics, biomarkers, health behaviors, family history, and Elixhauser
comorbidity conditions constructed using data from the past one to three years. A detailed description of
each predictor group is provided in Appendix Table Al.
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Table A3: Effect of the COVID-19 Pandemic on Health Screening Participation: Baseline
Estimates

(1) (2 3 4) (%) (6) (7)

CoOVID -0.0117*** -0.0518*** -0.0534%** -0.0531*** -0.0513*** -0.0511%*** -0.0511%**

(0.0009) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)
Controls:
Year trend Y Y Y Y Y Y
Demographics Y Y Y Y Y
Biomarkers Y Y Y Y
Health behavior Y Y Y
Family history Y Y
Elixhauser comorbidity Y
Adjusted R-squared .0002 .0011 .0288 .0302 .0315 .0331 .0344
Observations 770815 770815 770815 770815 770815 770815 770815

Notes: Table A3 reports estimates from a series of linear probability models assessing the effect of the
COVID-19 pandemic on the likelihood of receiving a health screening among eligible individuals. The
outcome variable is a dummy equal to 1 if the individual received a health screening between year ¢ and
June of year ¢ + 1, and O otherwise. The variable of interest, COVID, is a dummy equal to 1 if the individual
was eligible for screening in 2020 and 0 if eligible in 2016-2018. Individuals eligible in 2019 are excluded,
as their time window partially overlapped with the early stage of the pandemic. Control variables are added
sequentially from Columns (1) to (7), with definitions provided in Appendix Table Al. Standard errors are
robust to heteroskedasticity. A single asterisk denotes statistical significance at the 90% confidence level,
double 95%, and triple 99%.
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Table A4: Sample Characteristics (Section 5)

Untreated

Treated

Mean SD Mean SD Difference

Outcome variables

Care initiation (hypertension) 0.073 0.088 -0.014

Number of care visits (hypertension) 0.466  2.505 0.590 2923 -0.124

Care initiation (diabetes) 0.069 0.087 -0.017

Number of care visits (diabetes) 0.238 1.665 0.286 1.688 -0.049
Demographic characteristics

Age 53.110 9.008 52513 8713 0.597

Health insurance premium (20-quantiles)  11.411 6.305 11.948 5991 -0.537

Recipient of medical aid 0.020 0.006 0.014

Employee-insured status 0.492 0.703 -0.211

Female 0.524 0.503 0.021
Previous screening results (1-2 years prior)
Obesity risk status (BMI)

Underweight 0.033 0.027 0.006

Normal 0.635 0.652 -0.018

Caution 0.291 0.287 0.004

At-risk 0.041 0.034 0.007
Obesity risk status (waist circumference)

Normal 0.801 0.820 -0.019

At-risk 0.199 0.180 0.019
Diabetes risk status (fasting blood glucose)

Normal 0.656 0.673 -0.017

Caution 0.316 0.306 0.009

At-risk 0.028 0.021 0.008
Hypertension risk status (blood pressure)

Normal 0.415 0.458 -0.043

Caution 0.472 0.464 0.008

At-risk 0.112 0.078 0.034
Smoking cessation needed

No 0.765 0.812 -0.047

Yes 0.235 0.188 0.047
Drinking cessation needed

No 0.650 0.654 -0.004

Yes 0.350 0.346 0.004
Physical activity needed

No 0.462 0.521 -0.059

Yes 0.538 0.479 0.059
Family history (diabetes)

No 0.612 0.693 -0.081

Yes 0.135 0.134 0.001

Missing 0.253 0.173 0.080
Family history (hypertension)

No 0.592 0.671 -0.079

Yes 0.163 0.164 -0.001

Missing 0.245 0.165 0.080
N 26212 172508
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