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Abstract

This study examines the impact of expanding the eligible age for child influenza vaccination in
South Korea. Using data from the Korea National Health and Nutrition Examination Survey,
I find that expanding the program’s eligible age significantly increased the vaccination rate
of children aged 5-12 years in the treatment group. This increase is mainly observed among
households with incomes above the median, those with working mothers, and those living in
areas with high access to health care facilities. Additionally, I use claims data from the National
Health Insurance Service to analyze changes in influenza-related health care utilization as the
program’s eligible age expanded. The results show that the estimates from the difference-
in-differences model are not robust to time-varying confounding factors related to influenza
incidence. However, the triple-difference model, which compares high and low vaccination
match rates, indicates that influenza-related health care utilization decreased during high match

rates after the policy was implemented.
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1 Introduction

Seasonal flu is an acute respiratory illness caused by the influenza virus. It is the sixth leading
cause of death among adults in the United States, tied with breast cancer (Ward, 2014). Globally,
seasonal flu is responsible for an estimated 291,000 to 646,000 deaths annually (Iuliano et al.,
2018). The elderly, children, pregnant women, and people with chronic diseases are disproportion-
ately affected by influenza. In South Korea, influenza also has a significant socioeconomic impact.
According to Suh et al. (2013), the economic cost of influenza during the 2007-2008 flu season in
South Korea was estimated to be $42 million.

Influenza can cause indirect costs by impairing human capital formation, in addition to the loss
of life and direct medical expenses. Studies have shown that exposure to influenza early in life
can lead to reduced height, education, income, and employment (Almond 2006} Lin and Liu 2014;
Kelly 2011). The most effective tool to combat this disease is a vaccine. The World Health Or-
ganization (WHO) recommends vaccinating vulnerable populations before the start of flu season.
Meanwhile, the Centers for Disease Control and Prevention (CDC) recommends vaccinating the
entire population over six months of age (Ko and Kim [2020).

This study examines the impact of influenza vaccination programs for children, specifically
the program for children aged 5 to 12 years in South Korea, on influenza vaccination rates and
influenza-related healthcare utilization. To estimate the effect of the policy on vaccination rates,
it is necessary to address the empirical problem of significant differences in vaccination rates by
age before the policy was implemented. To account for age differences, a difference-in-differences
approach is employed, utilizing age and timing variations of the policy. The results indicate that
the expansion of the target age increased the vaccination rate of children aged 5 to 12 years by 11.8
percentage points relative to the control group of children aged 13 to 18 years. Compared to the
average of the treatment group before the policy was implemented, this is a 20 percent increase.
Heterogeneity analyses by household and parental characteristics indicate that the increase in vac-
cination rates was larger, although not significant, in children with higher household incomes.

To assess the effectiveness of vaccination programs, it is important to analyze changes in



influenza-related healthcare utilization alongside increases in vaccination rates. However, it is cru-
cial to control for the distinct age pattern in influenza incidence. A natural approach would be
to use a difference-in-differences model, similar to the one used to analyze influenza vaccination
rates. However, the results of the difference-in-differences event study show that the identifying
assumption is violated. Additionally, a significant prevalence of influenza virus with a low vaccine
match rate was identified in the post-period, specifically the 2018 flu year. To mitigate these issues,
I utilize a triple-difference model that compares periods of high and low influenza vaccine match
rates. The estimation results show a statistically significant decrease in influenza-related healthcare
utilization in the treatment group by 13.644 cases during periods of high vaccine match rates after
the policy was implemented.

This study adds to the existing literature on evaluating the effectiveness of vaccination poli-
cies. Abrevaya and Mulligan (2011) find that requiring varicella vaccination to enter a daycare
facility increases vaccination rates in the treatment group by 3.8%. Lawler (2017)) shows that both
recommendations and mandates for hepatitis A vaccination increase vaccination rates. Brilli et
al. (2020) and Van Ourti and Bouckaert (2020) analyze the effects of free vaccination programs.
Hirani (2021) shows that reminder letters to infants and young children increase vaccination rates.
The WHO and CDC recommend influenza vaccination for the entire population over six months of
age, but existing policies have mainly targeted infants, young children, and the elderly. This study
evaluates the effectiveness of flu vaccination policies for children and adolescents, a population not
extensively addressed in the literature. This group is important from a public health perspective be-
cause they are vulnerable to the spread of influenza due to their community living, especially in

daycare centers and schools.

2 Background

Prior to the 2016 flu season, the National Immunization Program only covered infants and children

aged 6 to 12 months. However, due to the increasing importance of influenza vaccination for chil-



dren, the program has gradually expanded to cover a wider age range. In the 2017 flu season, the
age range eligible for vaccination was expanded to include children up to 59 months old. The age
range was further expanded to include children up to 12 years old in the 2018 flu season. Children
who are eligible for the program can receive a free influenza vaccine through public health centers
and contracted medical institutions!T]

The Korea Disease Control and Prevention Agency (KDCA), the host agency of the vaccination
program, launched a campaign to encourage children to get vaccinated against influenza for the
2018 season. In addition to supporting the cost of vaccination, this campaign was initiated as
the target age of the vaccination program was significantly expanded. The KDCA conducted an
intensive vaccination week in October, when influenza vaccination began, and worked with the
Ministry of Education to conduct the campaign in schools and kindergartens. Furthermore, public
health centers provided influenza vaccination on weekends during the intensive vaccination week.
In this study, I evaluate the effectiveness of the influenza vaccination program for children aged 5

to 12 years implemented in Korea.

3 Effect of Coverage Expansion on Influenza Vaccination

3.1 Data

Section 3 examines the effects of expanding the eligible age for the National Immunization Pro-
gram on influenza vaccination. The analysis is based on data from the Korea National Health
and Nutrition Examination Survey (KNHANES) academic research raw data from 2014 to 2020,
which is converted to flu-years based on the time of the interview. Given that influenza vaccination
in Korea typically begins in September and the epidemic usually lasts from October to April of the
following year, the term "flu-year’ is defined as September of calendar year ¢ through August of
r+1.

The study measures influenza vaccination status based on the survey response, "Have you been

1. As of the 2018 flu season, there were a total of 8,879 contracted medical institutions.



vaccinated against influenza within a year?” This approach raises concerns about the reference
window problem, as it relies on a retrospective response. This is because influenza vaccinations
are typically given in the fall and winter, meaning that respondents were answering about their
vaccination behavior before the policy was implemented, yet are still classified as influenced by
the policy. Specifically, the timing of interviews conducted in September and October 2018, shortly
after the policy was implemented, may have led to an underestimation of the policy’s effect. This
issue is further explored in the robustness checks.

KNHANES covers all household members aged 1 year and older, enabling observations not
only on children affected by the policy but also on their parents, who significantly influence their
children’s healthcare utilization decisions. Household and parental information is utilized to exam-
ine heterogeneity.

Figure |1| displays the trend in vaccination rates by age prior to the expansion of the national
influenza vaccination program for children. The data show a clear decline in vaccination rates as
age increases, resulting in a significant difference in vaccination rates between the treatment group
(children aged 5-12 years) and the control group (children aged 13-18 years) before the policy was
implemented. Controlling for pre-existing differences in vaccination rates between the treatment
and control groups is crucial to identifying the effect of the policy. To achieve this, I will exploit

the variation in age and timing of the policy.

3.2 Empirical Approach

To assess the impact of expanding the eligible age for influenza vaccination, I use a standard

difference-in-differences model. The following specification is estimated:

Y; = Bo + Bi1Treat; + BoPost; + B3(Treat; x Post;) + Y X; + & (1)

where Y; is a dummy variable indicating whether individual i has ever been vaccinated against in-

fluenza in flu-year ¢, and Treat; takes the value 1 if the age is 5-12 years, and 0 otherwise. Next,



Figure 1: Vaccination Rate By Age Before Expanding Eligible Age
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Notes: Figure |1| shows vaccination rates by age using survey weights, with the shaded area indicating the
treatment group. Source: KNHANES.

Post; is a dummy variable indicating the time after the policy was implemented, with flu-years
18/19 and 19/20 corresponding to the post period. X; represents individual-level characteristics,
including child characteristics (age, sex, subjective health status), household characteristics (num-
ber of household members, household income, type of health insurance, private health insurance),
and parental characteristics (college education, flu vaccination, employment status). &; is a random
error term. Survey weights are used in all specifications.

Treat; controls for time-invariant differences between the treatment and control groups, while
Post; controls for time-varying unobservables common to both groups. The coefficient of interest,

B3, captures the change in the probability of vaccination in the treatment group after the policy



is implemented, relative to the control group. The identification of equation 1] is based on the
common trend assumption, which posits that the probability of vaccination in both groups would
have evolved similarly if the policy had not been implemented.

To support the identifying assumption, I will first control for a group-specific linear trend. This
allows me to control for group-specific unobservables that vary linearly Second, I will test the

identifying assumption using the following dynamic difference-in-differences model:

Y; = Bo+ BiTreat; + Z Bé‘(Treat,- x 1[Flu year, = k]) + Y X; + & + & 2)
kek

where K = {2014,2015,2016,2018,2019} and the reference year is the 2017 flu-year before the
policy was implemented. The control variables are identical to those in equation

Equation [2] captures the difference between the treatment and control groups relative to the
2017 flu year, with the coefficient of interest, [33" . A coefficient close to zero before policy imple-

mentation supports the validity of the common trend assumption.

3.3 Baseline Results

Table [I] presents estimates of equation [I] Column (1) shows a model without control variables,
indicating that expanding the eligible age for influenza vaccination increased the probability of
being vaccinated by 12.7 percentage points for children aged 5-12 in the treatment group. Columns
(2) through (4) sequentially control for child, family, and parental characteristics, showing that
the coefficients are robust. Column (4) shows an 11.8 percentage point increase in vaccination
rates at baseline, which represents a 20 percent increase from the pre-policy (2014-2017 flu years)
treatment group’s average vaccination rate of 0.59. In Column (5), group-specific linear time trends
are controlled to examine the validity of the identifying assumption in the difference-in-differences
model. The magnitude of the estimates is similar to the result in the baseline specification. In

Section I will analyze the heterogeneity of policy effects using Column (4) as the baseline

2. The linear specification is used because flu vaccination rates by group increase linearly across flu-years.



specification.

Table 1: Effect of Coverage Expansion on Influenza Vaccination

1 ) 3) “ )
Treat x Post 0.1270%*%*  0.1270%*%*  0.1295%**  0.1182***  (0.1156**
(0.0298) (0.0291) (0.0290) (0.0259) (0.0454)
Controls:
Child Y Y Y Y
Family Y Y Y
Parents Y Y
Group-specific trend Y
Observation 6699 6699 6699 6699 6699

Notes: Columns (1)-(5) present the results of estimating equation while varying the control variables. I use survey
weights for all specifications. Standard errors are calculated, taking into account the sampling design of KNHANES.
A single asterisk denotes statistical significance at 90% confidence level, double 95%, triple 99%.

3.4 Robustness Checks

Figure 2] shows the event study results based on equation [2] Initially, the coefficient is nearly
zero for the flu years 2014-2016, prior to policy implementation, when compared to the 2017
flu year, which serves as the reference point. This similarity in the changes between the treat-
ment and control groups before the policy’s implementation supports the identifying assumption
of the difference-in-differences approach. Following the policy’s introduction in the 2018 flu year,
a significant increase in the vaccination probability for the treatment group is observed (12.25
percentage points).

The outcome variable in Section[3]is constructed using the survey question, "Have you received
an influenza vaccination within the past year?”” Since influenza vaccinations are primarily adminis-
tered during the fall and winter seasons, the nature of the question and the difference in the timing
of the interview may lead to an underestimation of the policy’s effect. People interviewed earlier in
the influenza year, such as in September and October 2018, may actually be responding about their
vaccination behavior before the policy was implemented. To check the impact of this reference

window problem on the baseline results, I exclude the sample interviewed between September and



Figure 2: Event Study Results
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Notes: Figure shows the coefficients and 95% confidence intervals estimated using equationI use survey
weights for all specifications. Standard errors are calculated taking into account the sampling design of
KNHANES.

December 2018 and divide the post period into two: September-December 2018 and January 2019
and later (Bitler and Carpenter|2016; White 2021)). In column (2) of Table @ it can be seen that ex-
cluding the sample interviewed in September-December 2018 slightly increases the magnitude of
the coefficient relative to the baseline result in column (1). Next, in column (3), the coefficient on
Post 1 is smaller than that on Post 2 when I split the post period. However, the difference between
the two periods is small, so the reference window problem is not a major concern in this study.
Next, I examine two possible sources of contamination in the control group that can occur

depending on the definition of the treatment group. The first issue is that because the treatment



Table 2: Robustness Checks

Baseline Reference window Contamination Excluding
Excluding 2018.9~12  Alternative post ~ Excluding age 13~ Within household =~ COVID-19 period

6] @ 3 @ (O] (O]

Treat x Post 0.1182%%%* 0.1227%#%* 0.1279%#%** 0.1254%#%* 0.1384%#**
(0.0259) (0.0280) (0.0271) (0.0289) (0.0296)
Treat x Post 1 0.1108**
(0.0519)
Treat x Post 2 0.1227%#%*
(0.0280)
Observation 6699 6364 6699 6560 5994 6134

Notes: The results in each column use the same control variables as column (4) of Table but with a different sample or definition of the post-
period used in the estimation. I use survey weights for all specifications. Standard errors are calculated taking into account the sampling design of
KNHANES. A single asterisk denotes statistical significance at the 90% confidence level, double 95%, triple 99%.

group is determined by age, contamination of the control group can occur over time after the
policy is implemented. Specifically, a 12-year-old child affected by the policy in the 2018 flu-year
is included in the control group in the 2019 flu-year. To examine this effect, I exclude 13-year-olds
from the analysis in column (4) of Table[2] The magnitude of the coefficient increases relative to the
baseline result, but the difference is not large. A second issue is that children in the control group
may have siblings who are affected by the policy. If there is a spillover effect of the policy within
the household, the estimated coefficient may be biased. The direction of the bias is unclear a priori:
if children not affected by the policy are considered as a group that does not need to be vaccinated,
the effect could be overestimated (Bouckaert, Gielen, and Van Ourti [2020). On the other hand, if
children in the treatment group cause parents to perceive influenza vaccination as necessary, this
could lead to an increase in vaccination rates among children in the control group. This could lead
to underestimation (Ma et al. 2006; Yoo et al. 2010). In column (5), excluding children with siblings
in the treatment group from the control group slightly increases the magnitude of the estimate, but,
again, the change is not substantial. Thus, contamination of the control group does not seem to be
a major concern in this analysis.

Finally, since the 2019 flu year includes part of the COVID-19 pandemic, it is included in the
analysis. However, it is unlikely that the COVID-19 pandemic would have affected the vaccination

rate in the 2019 flu year, as influenza vaccinations are mostly administered before the influenza


~

epidemic season (December-April) to allow time for immunity to build up. Nevertheless, in col-
umn (6), I report results excluding the sample surveyed from February to August 2020. Here, the
coefficient increases by a relatively large amount, which is due to the fact that older children in the

control group are vaccinated at a relatively later point in the flu yearEI

3.5 Additional Results
3.5.1 Did the Policy Reach Low-Income Groups?

The monetary cost of vaccination has been reported as a barrier to vaccination in a variety of popu-
lations, including the general public, children, and healthcare workers (Schmid et al.|[2017)). In the
South Korean context, a survey on the cost of influenza vaccination shows that 64.8% of parents
reported that vaccination was expensive, with lower-income households more likely to report that
influenza vaccination was expensive compared to higher-income households (Hwang et al. 2017)ﬂ
After the policy was implemented, vaccination became free for eligible children. Therefore, I use
the following model to analyze whether the expansion of the age eligible for free influenza vacci-

nation contributed to the increase in vaccination rates among low-income households:
Y; = Bo+ Bi(Treat; x Post,) + B (z; x Treat; x Post;) + Other interaction terms + Y X; +¢&  (3)

where all other variables are the same as in equation [I] and z; denotes the individual characteristic
variable considered in each heterogeneity analysis. All interactions of z;, Treat;, and Post; other

than the noted interactions are also included.

3. According to responses to the question about the timing of influenza vaccination, 94.32% of influenza vaccina-
tions occurred from September to December. However, when divided into treatment and control groups, 96.51% of
the treatment group reported being vaccinated during this period, while 86.28% of the control group reported being
vaccinated during this period.

4. Low-income households are more likely to have limited financial resources for healthcare compared to higher-
income households. Indeed, according to the KNHANES survey responses on unmet medical needs, the proportion
of unmet medical needs due to “financial reasons” is significantly higher in the below-median income group (above-
median income: 2.34%, below-median income: 12.20%). Therefore, one might expect that financial constraints on
healthcare use would be greater in the lower-income group. However, the sample size is small (128 individuals with
unmet medical needs above median income and 82 below median income), so the reliability of the results is limited

10



Table 3| shows the differences in policy effects by household income. Taking the baseline result
in column (1) and dividing it by those above and below the median income in column (2), there
is a 0.0762 increase in the probability of vaccination for children in households above the median
income, although the difference is not statistically significant. In column (3), when I use income
quartiles instead of median income, the effect of the policy increases linearly with the increase in
household income. Although the interpretation is limited because the differences between groups
in Table [3] are not statistically significant, it at least confirms that the probability of vaccination

does not increase more for those with greater financial constraints.

Table 3: Heterogeneity by Household Income

Baseline By household income
Median income Income quantile

6] 2 3)

Treat x Post 0.1182%** 0.0696 0.0552
(0.0259) (0.0460) (0.0972)
Treat x Post x Above median income 0.0762
(0.0558)
Treat x Post x Income quantile =2 0.0243
(0.1122)
Treat x Post x Income quantile = 3 0.0692
(0.1073)
Treat x Post x Income quantile =4 0.1136
(0.1071)
Observation 6699 6699 6699

Notes: The results in each column use the same control variables as column (4) of Table Columns (2) and (3) present
the results of estimating equation 3| with respect to household income. I use survey weights for all specifications. Stan-
dard errors are calculated taking into account the sampling design of KNHANES. A single asterisk denotes statistical
significance at the 90% confidence level, double 95%, triple 99%.

The larger effect of the policy among higher-income groups, who are expected to have fewer
financial constraints, does not imply that financial costs are not important for influenza vaccination.
It may simply be that higher-income groups are more likely to take advantage of the policy that
provides monetary benefits. In Table [} I first examine differences by income level for variables
closely associated with childhood influenza vaccination. Lower-income groups are generally more

likely to have mothers with less than a college degree, and the differences are quite large, even when

11



Table 4: Descriptive Statistics by Household Income

Household income
Below median Above median Difference

Mother’s age 41.103 41.619 -0.517
Mother’s education:
Below college 0.477 0.286 0.191
Above college 0.327 0.618 -0.291
Missing 0.195 0.096 0.100
Mother’s working status:
Yes 0.524 0.633 -0.109
No 0.280 0.271 0.009
Missing 0.195 0.096 0.100
Daytime work:
Yes 0.825 0.866 -0.041
No 0.175 0.134 0.041
Healthcare facilities (per 1,000) 2.611 2.865 -0.253

Notes: Tablecompares the means of variables associated with influenza vaccination of children by household income.

accounting for the higher proportion of missing VariablesE] In addition, there is a clear difference
in whether mothers are working. If they are working, lower-income groups are slightly more likely
to be working irregular hours, night work, etc., rather than daytime hours. Finally, there are clear
differences in the number of healthcare facilities per 1,000 children eligible for vaccination in the
municipality of residence.

Next, I conduct a heterogeneity analysis using equation 3| by the variables identified in Table
M] Figure [3(a)] shows that children whose mothers have a bachelor’s degree or higher are slightly
more likely to be vaccinated than children whose mothers have less than a bachelor’s degree, but
this difference is not statistically significant. Figure shows the difference by mothers’ working
status. The increase in the probability of vaccination is significantly larger and statistically signif-
icant for those whose mothers are employed compared to those whose mothers are not. In Figure
I perform the same analysis by further categorizing mothers’ work status: working during
the day, working outside the day (night work, irregular work, etc.), and not working. The results
show that the increase in the probability of immunization is mainly for children with mothers who

work during the day compared to children with mothers who do not work. Finally, when I examine

5. Missing values may be due to non-response, either because the mother is actually absent from the household or
is absent at the time of the survey.
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differences based on access to healthcare in Figure[3(d)} I find that the effect of the policy is greater

for those living in regions with a higher-than-average number of healthcare facilities compared to

those living in regions with a lower-than-average number of healthcare facilities per 1,000 eligible

children.

Figure 3: Heterogeneity Analysis by Key Variables
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Notes: Figure shows the coefficients and 95% confidence intervals estimated using equation I use survey
weights for all specifications. Standard errors are calculated taking into account the sampling design of

KNHANES.

The heterogeneity analysis suggests that the policy was more effective among working moth-

ers, and it is possible that this may have driven the differences observed by income level. There



are two main channels through which mothers’ time costs may have changed with the expansion
of the age eligibility for national influenza vaccination, which may have contributed to the differ-
ences observed in Figure [3] First, the expansion of weekend health center operations during the
influenza vaccination campaign week. During the two-week vaccination campaign, health centers
were open on weekends in cities and districts that lacked referral providers. However, the propor-
tion of vaccinations at public health centers is significantly smaller when considering the statis-
tics by vaccination facilities collected after the policy was implementedﬁ Therefore, it is unlikely
that the temporary expansion of health center operations would lead to a significant reduction in
time costs for mothers. Second, it is possible that, with the significant expansion of the eligible
age, healthcare providers anticipated a sharp increase in demand for influenza vaccinations and
increased their weekend operations. If this channel operated significantly, it would be consistent
with increased vaccination rates among children with working mothers and increased vaccination

rates in areas with greater access to healthcare [’

3.5.2 Effects of Vaccination Reminder Messages

In addition to supporting the cost of vaccination, information dissemination through educational
institutions was also implemented to increase vaccination rates. In particular, during the 2019 flu
year, all children aged 10 to 12 years old in upper elementary school were sent a reminder message
to reconsider the vaccination rate. Here, I examine the effect of the influenza vaccination reminder

message using the following model:

Yi=a+ Z — BfTreat1; x 1[Flu year, = k] + Z BXTrear2; x 1[Flu year, = k] + Other terms (4)
kekK kekK

where Treatl; is a dummy variable that takes the value of 1 if the child is aged 5-9 years old

in the affected group, not receiving a vaccination reminder message from the influenza national

6. According to A EE (2019), only 68,056, or about 1.5% of the total 5,744,731 children eligible for the
national influenza vaccination program in the 2018-2019 flu year, were vaccinated through public health centers. The
remaining 98.5% were vaccinated through referral facilities.

7. Analysis examining this channel is ongoing.
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vaccination program, and O otherwise. Treat2; is a dummy variable that takes the value of 1 if the
child is aged 10 to 12 years old and receives a reminder message, and 0 otherwise. All other control
variables in the model are the same as in equation [I]

Figure @ shows B{‘ and [)’2" estimated from equation El If the reminder messages contributed
to increased vaccination rates, one would expect to see an increase in the coefficient for 10- to

12-year-olds in the 2019 flu year; however, no such pattern is observed in Figure (4]

Figure 4: Effects of Vaccination Reminder Messages
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Notes: Figure 4| shows [31", Bé‘, and 95% confidence intervals estimated using equation Ié—_ll The grayed-out
region represents the flu year when the vaccination reminder messages were sent to children aged 10-12
years. I use survey weights. Standard errors are calculated, taking into account the sampling design of
KNHANES.
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4 Effect of Coverage Expansion on Influenza-Related Health-
care Utilization

In Section [3] I analyzed the effect of the expansion of the age of eligibility for national influenza
vaccination on vaccination rates. In this section, I examine whether the policy-induced increase in

vaccination rates led to improvements in health outcomes.

4.1 Data

To analyze the incidence of influenza, I use the National Health Insurance Service (NHIS) National
Health Information Database. The database is generated by processing individual medical informa-
tion collected by the NHIS to meet the purpose of the study. It allows the researcher to determine
the sample population, sample size, and sampling period from the entire population of health in-
surance enrollees. The data used in this study include individuals 23 years of age or younger as
of 2017, selected by random sampling stratified by sex and age. It includes eligibility data such as
gender, age, insurance type, insurance premium, and medical claims data. Based on these data, a
sample of children aged 5 to 18 is constructed and analyzed for the 2014 flu year through the 2018
flu year.

Figure [5| shows the number of influenza-related claims per 1,000 children for flu years 2014-
2017, before the policy was implemented. As with influenza vaccination, it is evident that younger
children are more susceptible to influenza. Therefore, I use the same difference-in-differences
model as in Section [3|to identify policy effects, controlling for group differences and year-to-year

trends in influenza incidence.
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Figure 5: Influenza-Related Healthcare Utilization by Age Before Coverage Expansion
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Notes: Figure|S|shows the number of influenza-related healthcare utilization per 1,000 children for flu years
2014-2017, before the policy was implemented. Source: NHIS data.

4.2 Empirical Approach
4.2.1 Violation of the Identifying Assumption of Difference-in-Differences Model

First, similar to Section [3] I estimate the following event study model to examine the validity of
using a difference-in-differences approach to analyze the impact of expanding the eligible age for

the National Vaccination Program on influenza-related healthcare utilization:

Y = Bo+ BiTreat; + BoYear; + Z B3"(Treat,~ x 1[Flu year, = k]) + ¥ Xi; + & 5)
kekK
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where Y}, is the number of influenza-related claims per 1,000 children in year-month 7 for age group
i. Treat; is a dummy variable that takes the value 1 for age group 5-12 and O for age group 13-18. In
this section, the 2019 flu year is excluded due to COVID-19, so the post period is only the 2018 flu
year (K = {2014,2015,2016,2018}) and the reference year is the 2017 flu year before the policy
was implemented. Xj; includes the interaction term with T'reat; of the quadratic term of the average
monthly precipitation, the average temperature, and the linear time trend of the flu year. &; is the
clustered standard error at the age by flu year level.

Figure[6] shows the results of the estimation using equation[5] Clearly, the number of flu-related
claims in the treatment group was relatively small in the 2014 flu year compared to the 2017 flu
year. Thereafter, the coefficient is close to zero, and in the 2018 flu year, when the policy was
implemented, the coefficient is positive but insignificant. The results in Figure [6] suggest that the
identifying assumption of the difference-in-differences model may be violated.

The potential for bias due to time-varying confounding becomes more pronounced when the
distribution of circulating influenza types and vaccine match over time are considered. Figure (7)
shows the influenza virus type and vaccine match by influenza year collected from influenza lab-
oratory specimen surveillance reports, along with the number of related claimsﬁ According to
Figure [/} in the 2018 flu year, influenza type B was particularly prevalent in the spring, and it is
clear that the vaccine match was significantly lower during this period. At the same time, there is
a clear increase in influenza-related healthcare utilization during this period compared to other flu
years, suggesting that, in addition to the linear trend across flu years seen in Figure [/ there are
likely confounding factors specific to the 2018 flu year. In particular, the single post-period in this
section exacerbates this problem. To mitigate the effect of vaccine mismatch, I consider a triple

difference model with an additional interaction term comparing periods of high and low match.

8. Influenza vaccine match is calculated as follows:
E =M" s 1M M3 s 13 4 MB x 1B

where E; is the influenza vaccine match rate for the month, M; is the match between the vaccine strain and the
circulating strain for each influenza virus type (HIN1, H3N2, B). I is the proportion of each type in the total number
of influenza viruses detected per month
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Figure 6: Event Study Results
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Notes: Figure |§| shows the coefficients and 95% confidence intervals estimated using equation |5} Standard
errors are clustered by age group.

4.2.2 Match Rate as Moderating Channel

In order to use the influenza vaccine match rate as an additional difference variable, the effective-
ness of influenza vaccination should actually vary by the vaccine match rate. To explore this, I
collected influenza vaccination coverage data by district (sigungu in Korean) and age group for

the 2018 flu yearﬂ Using the influenza vaccination rates and vaccine match rates, I estimate the

9. KDCA only provides information on influenza vaccination coverage for those eligible for the National Vaccina-
tion Program.
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Figure 7: Influenza-Related Healthcare Use, Circulating Influenza Type and Vaccine Match Rate
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Notes: Figure shows the type of influenza virus detected and the vaccine match rate, along with the number
of healthcare use, collected using influenza laboratory specimen surveillance reports.

following difference-in-differences model:
Yicm = ﬁl (Vzc X Mm) + 6ic + 6sm + Eiem (6)

where Y., is the number of influenza-related claims per 1,000 children in year-month ¢ for age
group i. The age groups are 5-6 years, 7-9 years, and 10-12 years. V;. is the influenza vaccination
rate, and M,, is the influenza vaccine match rate. To control for time-invariant local characteristics
related to influenza vaccination, I include age group-district fixed effects, &, in the model. To
control for region-specific time trends, I control for province-month fixed effects, &sy,,. Standard
errors are clustered at the age group-district level.

Table [5] presents the results of estimating equation [6] In column (1), it can be seen that the

relationship between vaccination rate and influenza-related healthcare utilization is positive. This
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Table 5: Relationship Between Influenza Vaccination Rates and Healthcare Utilization by Vaccine
Match Rate

All months Flu-season Non-season
(D 2 3) “4) %) (6)
Vaccination rate 68.486***  68.486***  85.620%**
(4.962) (4.962) (14.150)
Match rate 14.114%**  3]1.141%*
(1.630) (12.243)
Vaccination rate * Match rate -24.774 -59.951 *** -51.686* -8.321**
(17.989) (15.924) (28.004) (3.778)
Controls:
Age group-district FE Y Y Y
Province-month FE Y Y Y
Observation 9000 9000 9000 9000 4500 4500

Notes: Table 5 presents the results of estimating equation 6. Columns (1)—(3) are models without fixed
effects, while column (4) controls for age group-district fixed effects and province-month fixed effects.
Columns (5)-(6) estimate the model in column (4) separately for influenza epidemic and non-epidemic
periods. Standard errors are clustered at the age group-district level. A single asterisk denotes statistical
significance at the 90% confidence level, double 95%, and triple 99%.

suggests that local healthcare infrastructure, climate, etc. are confounding factors in the relation-
ship between influenza vaccination rates and healthcare utilization. Therefore, it is necessary to
control for the baseline term of vaccination rate or age group-district fixed effects. Next, when
including the vaccine match rate in column (2), the relationship between the match rate and health-
care utilization is positive because the period of high match rate in the 2018 flu year coincides
with the peak of the relatively virulent influenza A season. In column (3), I add an interaction
term between vaccination rates and match rates. Although not significant, it shows that healthcare
utilization decreases as vaccination rates increase during periods of high match. Then, in column
(4), 1 control for province-month fixed effects and find a clear negative relationship. Finally, in
columns (5) and (6), when separating influenza-active and non-influenza-active seasons, it is ob-
served that the decrease in healthcare utilization following influenza vaccination occurs mainly
during influenza-active seasons. These results support the idea that vaccine match rates moderate

the effect of influenza vaccination on healthcare utilization.

21



4.2.3 Triple Difference Model

To account for the violation of the identifying assumption identified in Section[4.2.1| and the time-
varying confounders present in the 2018 flu year, I estimate the following triple difference model

using the vaccine match rate:

Yim: = Bo + Bi1Treat;  Post; x Good match,,; + Other interaction terms + ¥ X + € 7

where Good match,,; is a dummy variable that takes the value of 1 if it is greater than or equal
to the average vaccine match for the entire sample period, and 0 otherwise. The interaction terms
between Treat;, Post;, and Good match,,; are all included in the model. Otherwise, it is the same

as equation [5

4.3 Estimation Results
4.3.1 Validity of Identifying Assumption

In Figure |8} I examine the time trends of low and high match rates before estimating the triple
difference model. Figure [8(a)| presents the results of estimating the difference-in-differences event
study model for each of the periods of high and low match rates. The results show that prior to
the expansion of the eligible age, both periods exhibit similar trends when compared to the 2017
flu year. In the 2015 flu year, there is a slight increase in the difference, but it is not statistically
significant. In the 2018 flu year, after the policy was implemented, the number of healthcare uti-
lization increases sharply during the low match period, while the coefficient is close to zero during
the high match period. In Figure the triple difference event study model is estimated. Similar
to the pattern identified in Figure the difference between the treatment and control groups
in the low versus high match periods is not significant before the policy was implemented, but
influenza-related healthcare utilization in the treatment group decreases after the policy was im-
plemented. The results in Figure 8 show that the low match period fits as a counterfactual to the

high match period, and that the triple difference model effectively controls for the low matched
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type of epidemic that occurred during the 2018 flu year.

Figure 8: Event Study Results
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Notes: In Figure , I present the results of estimating a difference-in-differences event study model for
each of the high and low vaccine match periods. In Figure [8(b)} the triple difference event study model is
estimated. Standard errors are clustered by age and flu year group.

4.3.2 Main Results

Table [6] presents the results of estimating the effect of expanding the age of eligibility for the
national influenza vaccination program on influenza-related healthcare utilization. First, columns
(1)—(4) present the results of estimating a difference-in-differences model. Column (1) is a model
without control variables and shows that influenza-related healthcare utilization in the treatment
group increases after the policy is implemented, although it is not statistically significant. Moti-
vated by the trend in Figure[d] it is then observed that the sign of the coefficient changes to negative
when controlling for group-specific linear flu-year trends. In columns (3)—(4), I additionally control
for climate variables, resulting in a slight change in the coefficient, which is close to zero at -0.893
in column (4). However, these analyses do not account for the effect of the vaccine mismatch that
occurred during the 2018 flu year, as shown in Figure [6]

Next, columns (5) and (6) present the difference-in-differences estimates divided into periods
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of high and low match. The results show that the increase in the number of cases in the treatment
group occurs during the period of poor match, while the number of cases decreases during the
period of good match, although not statistically significant.

In column (7), I estimate a triple difference model (equation [/) by adding a dummy variable
for the good vaccine match period to estimate the difference between the two periods. The esti-
mated coefficient of the triple difference is statistically significant, implying a 13.644 decrease in
influenza-related healthcare utilization in the treatment group during the good match period after
the policy was implemented. In column (8), I estimate a triple difference model with a continuous
match rate. There is a significant decrease in influenza-related healthcare utilization in the treat-
ment group as the match rate increases, with a -10.86 decrease in healthcare utilization for a 1 SD
increase in vaccine match ratem Column (9) reports the difference-in-differences estimate using
the sample in columns (7) and (8) to check for the effect of differences in sample composition, as

there are missing observations due to the lack of information on vaccine matches.

5 Conclusion

This study analyzed the effects of the influenza vaccination program for children aged 5 to 12
years in South Korea. According to the results, the policy increased the vaccination rate of chil-
dren aged 5 to 12 by about 11.8 percentage points, which is 20 percent higher than the average
before the policy was implemented. Next, I examined whether the monetary support for the na-
tional influenza vaccination program had an impact on groups with greater financial constraints in
healthcare utilization. I found that the effect of the policy was greater among higher-income house-
holds, despite the fact that lower-income households had greater financial constraints in healthcare
utilization. This may be due to higher access to healthcare in the higher-income group, as well
as possible changes in factors related to the time costs of working mothers. Further analysis is

needed to identify clear channels. Finally, I analyzed the impact of increased vaccination rates on

10. The vaccine match rate has a mean of 0.6325 and a standard deviation of 0.3342
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influenza-related healthcare utilization. Triple-difference model estimates suggest that influenza-
related healthcare utilization among children aged 5 to 12 years decreased by 13.644 cases per

1,000 children during the period of high match rates after the policy was implemented.
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