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Abstract

This study examines the impact of expanding the eligible age for child influenza vaccination in

South Korea. Using data from the Korea National Health and Nutrition Examination Survey,

I find that expanding the program’s eligible age significantly increased the vaccination rate

of children aged 5-12 years in the treatment group. This increase is mainly observed among

households with incomes above the median, those with working mothers, and those living in

areas with high access to health care facilities. Additionally, I use claims data from the National

Health Insurance Service to analyze changes in influenza-related health care utilization as the

program’s eligible age expanded. The results show that the estimates from the difference-

in-differences model are not robust to time-varying confounding factors related to influenza

incidence. However, the triple-difference model, which compares high and low vaccination

match rates, indicates that influenza-related health care utilization decreased during high match

rates after the policy was implemented.
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1 Introduction

Seasonal flu is an acute respiratory illness caused by the influenza virus. It is the sixth leading

cause of death among adults in the United States, tied with breast cancer (Ward, 2014). Globally,

seasonal flu is responsible for an estimated 291,000 to 646,000 deaths annually (Iuliano et al.,

2018). The elderly, children, pregnant women, and people with chronic diseases are disproportion-

ately affected by influenza. In South Korea, influenza also has a significant socioeconomic impact.

According to Suh et al. (2013), the economic cost of influenza during the 2007-2008 flu season in

South Korea was estimated to be $42 million.

Influenza can cause indirect costs by impairing human capital formation, in addition to the loss

of life and direct medical expenses. Studies have shown that exposure to influenza early in life

can lead to reduced height, education, income, and employment (Almond 2006; Lin and Liu 2014;

Kelly 2011). The most effective tool to combat this disease is a vaccine. The World Health Or-

ganization (WHO) recommends vaccinating vulnerable populations before the start of flu season.

Meanwhile, the Centers for Disease Control and Prevention (CDC) recommends vaccinating the

entire population over six months of age (Ko and Kim 2020).

This study examines the impact of influenza vaccination programs for children, specifically

the program for children aged 5 to 12 years in South Korea, on influenza vaccination rates and

influenza-related healthcare utilization. To estimate the effect of the policy on vaccination rates,

it is necessary to address the empirical problem of significant differences in vaccination rates by

age before the policy was implemented. To account for age differences, a difference-in-differences

approach is employed, utilizing age and timing variations of the policy. The results indicate that

the expansion of the target age increased the vaccination rate of children aged 5 to 12 years by 11.8

percentage points relative to the control group of children aged 13 to 18 years. Compared to the

average of the treatment group before the policy was implemented, this is a 20 percent increase.

Heterogeneity analyses by household and parental characteristics indicate that the increase in vac-

cination rates was larger, although not significant, in children with higher household incomes.

To assess the effectiveness of vaccination programs, it is important to analyze changes in
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influenza-related healthcare utilization alongside increases in vaccination rates. However, it is cru-

cial to control for the distinct age pattern in influenza incidence. A natural approach would be

to use a difference-in-differences model, similar to the one used to analyze influenza vaccination

rates. However, the results of the difference-in-differences event study show that the identifying

assumption is violated. Additionally, a significant prevalence of influenza virus with a low vaccine

match rate was identified in the post-period, specifically the 2018 flu year. To mitigate these issues,

I utilize a triple-difference model that compares periods of high and low influenza vaccine match

rates. The estimation results show a statistically significant decrease in influenza-related healthcare

utilization in the treatment group by 13.644 cases during periods of high vaccine match rates after

the policy was implemented.

This study adds to the existing literature on evaluating the effectiveness of vaccination poli-

cies. Abrevaya and Mulligan (2011) find that requiring varicella vaccination to enter a daycare

facility increases vaccination rates in the treatment group by 3.8%. Lawler (2017) shows that both

recommendations and mandates for hepatitis A vaccination increase vaccination rates. Brilli et

al. (2020) and Van Ourti and Bouckaert (2020) analyze the effects of free vaccination programs.

Hirani (2021) shows that reminder letters to infants and young children increase vaccination rates.

The WHO and CDC recommend influenza vaccination for the entire population over six months of

age, but existing policies have mainly targeted infants, young children, and the elderly. This study

evaluates the effectiveness of flu vaccination policies for children and adolescents, a population not

extensively addressed in the literature. This group is important from a public health perspective be-

cause they are vulnerable to the spread of influenza due to their community living, especially in

daycare centers and schools.

2 Background

Prior to the 2016 flu season, the National Immunization Program only covered infants and children

aged 6 to 12 months. However, due to the increasing importance of influenza vaccination for chil-
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dren, the program has gradually expanded to cover a wider age range. In the 2017 flu season, the

age range eligible for vaccination was expanded to include children up to 59 months old. The age

range was further expanded to include children up to 12 years old in the 2018 flu season. Children

who are eligible for the program can receive a free influenza vaccine through public health centers

and contracted medical institutions.1

The Korea Disease Control and Prevention Agency (KDCA), the host agency of the vaccination

program, launched a campaign to encourage children to get vaccinated against influenza for the

2018 season. In addition to supporting the cost of vaccination, this campaign was initiated as

the target age of the vaccination program was significantly expanded. The KDCA conducted an

intensive vaccination week in October, when influenza vaccination began, and worked with the

Ministry of Education to conduct the campaign in schools and kindergartens. Furthermore, public

health centers provided influenza vaccination on weekends during the intensive vaccination week.

In this study, I evaluate the effectiveness of the influenza vaccination program for children aged 5

to 12 years implemented in Korea.

3 Effect of Coverage Expansion on Influenza Vaccination

3.1 Data

Section 3 examines the effects of expanding the eligible age for the National Immunization Pro-

gram on influenza vaccination. The analysis is based on data from the Korea National Health

and Nutrition Examination Survey (KNHANES) academic research raw data from 2014 to 2020,

which is converted to flu-years based on the time of the interview. Given that influenza vaccination

in Korea typically begins in September and the epidemic usually lasts from October to April of the

following year, the term ’flu-year’ is defined as September of calendar year t through August of

t +1.

The study measures influenza vaccination status based on the survey response, ”Have you been

1. As of the 2018 flu season, there were a total of 8,879 contracted medical institutions.
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vaccinated against influenza within a year?” This approach raises concerns about the reference

window problem, as it relies on a retrospective response. This is because influenza vaccinations

are typically given in the fall and winter, meaning that respondents were answering about their

vaccination behavior before the policy was implemented, yet are still classified as influenced by

the policy. Specifically, the timing of interviews conducted in September and October 2018, shortly

after the policy was implemented, may have led to an underestimation of the policy’s effect. This

issue is further explored in the robustness checks.

KNHANES covers all household members aged 1 year and older, enabling observations not

only on children affected by the policy but also on their parents, who significantly influence their

children’s healthcare utilization decisions. Household and parental information is utilized to exam-

ine heterogeneity.

Figure 1 displays the trend in vaccination rates by age prior to the expansion of the national

influenza vaccination program for children. The data show a clear decline in vaccination rates as

age increases, resulting in a significant difference in vaccination rates between the treatment group

(children aged 5-12 years) and the control group (children aged 13-18 years) before the policy was

implemented. Controlling for pre-existing differences in vaccination rates between the treatment

and control groups is crucial to identifying the effect of the policy. To achieve this, I will exploit

the variation in age and timing of the policy.

3.2 Empirical Approach

To assess the impact of expanding the eligible age for influenza vaccination, I use a standard

difference-in-differences model. The following specification is estimated:

Yi = β0 +β1Treati +β2Postt +β3(Treati ×Postt)+ γ
′Xi + εi (1)

where Yi is a dummy variable indicating whether individual i has ever been vaccinated against in-

fluenza in flu-year t, and Treati takes the value 1 if the age is 5-12 years, and 0 otherwise. Next,
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Figure 1: Vaccination Rate By Age Before Expanding Eligible Age

Notes: Figure 1 shows vaccination rates by age using survey weights, with the shaded area indicating the
treatment group. Source: KNHANES.

Postt is a dummy variable indicating the time after the policy was implemented, with flu-years

18/19 and 19/20 corresponding to the post period. Xi represents individual-level characteristics,

including child characteristics (age, sex, subjective health status), household characteristics (num-

ber of household members, household income, type of health insurance, private health insurance),

and parental characteristics (college education, flu vaccination, employment status). εi is a random

error term. Survey weights are used in all specifications.

Treati controls for time-invariant differences between the treatment and control groups, while

Postt controls for time-varying unobservables common to both groups. The coefficient of interest,

β3, captures the change in the probability of vaccination in the treatment group after the policy
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is implemented, relative to the control group. The identification of equation 1 is based on the

common trend assumption, which posits that the probability of vaccination in both groups would

have evolved similarly if the policy had not been implemented.

To support the identifying assumption, I will first control for a group-specific linear trend. This

allows me to control for group-specific unobservables that vary linearly.2 Second, I will test the

identifying assumption using the following dynamic difference-in-differences model:

Yi = β0 +β1Treati + ∑
k∈K

β
k
2 (Treati ×1[Flu yeart = k])+ γ

′Xi +δt + εi (2)

where K = {2014,2015,2016,2018,2019} and the reference year is the 2017 flu-year before the

policy was implemented. The control variables are identical to those in equation 1.

Equation 2 captures the difference between the treatment and control groups relative to the

2017 flu year, with the coefficient of interest, β k
3 . A coefficient close to zero before policy imple-

mentation supports the validity of the common trend assumption.

3.3 Baseline Results

Table 1 presents estimates of equation 1. Column (1) shows a model without control variables,

indicating that expanding the eligible age for influenza vaccination increased the probability of

being vaccinated by 12.7 percentage points for children aged 5-12 in the treatment group. Columns

(2) through (4) sequentially control for child, family, and parental characteristics, showing that

the coefficients are robust. Column (4) shows an 11.8 percentage point increase in vaccination

rates at baseline, which represents a 20 percent increase from the pre-policy (2014-2017 flu years)

treatment group’s average vaccination rate of 0.59. In Column (5), group-specific linear time trends

are controlled to examine the validity of the identifying assumption in the difference-in-differences

model. The magnitude of the estimates is similar to the result in the baseline specification. In

Section 3.5, I will analyze the heterogeneity of policy effects using Column (4) as the baseline

2. The linear specification is used because flu vaccination rates by group increase linearly across flu-years.
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specification.

Table 1: Effect of Coverage Expansion on Influenza Vaccination

(1) (2) (3) (4) (5)

Treat × Post 0.1270*** 0.1270*** 0.1295*** 0.1182*** 0.1156**
(0.0298) (0.0291) (0.0290) (0.0259) (0.0454)

Controls:
Child Y Y Y Y
Family Y Y Y
Parents Y Y
Group-specific trend Y

Observation 6699 6699 6699 6699 6699

Notes: Columns (1)-(5) present the results of estimating equation 1 while varying the control variables. I use survey
weights for all specifications. Standard errors are calculated, taking into account the sampling design of KNHANES.
A single asterisk denotes statistical significance at 90% confidence level, double 95%, triple 99%.

3.4 Robustness Checks

Figure 2 shows the event study results based on equation 2. Initially, the coefficient is nearly

zero for the flu years 2014-2016, prior to policy implementation, when compared to the 2017

flu year, which serves as the reference point. This similarity in the changes between the treat-

ment and control groups before the policy’s implementation supports the identifying assumption

of the difference-in-differences approach. Following the policy’s introduction in the 2018 flu year,

a significant increase in the vaccination probability for the treatment group is observed (12.25

percentage points).

The outcome variable in Section 3 is constructed using the survey question, ”Have you received

an influenza vaccination within the past year?” Since influenza vaccinations are primarily adminis-

tered during the fall and winter seasons, the nature of the question and the difference in the timing

of the interview may lead to an underestimation of the policy’s effect. People interviewed earlier in

the influenza year, such as in September and October 2018, may actually be responding about their

vaccination behavior before the policy was implemented. To check the impact of this reference

window problem on the baseline results, I exclude the sample interviewed between September and
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Figure 2: Event Study Results

Notes: Figure 2 shows the coefficients and 95% confidence intervals estimated using equation 2 I use survey
weights for all specifications. Standard errors are calculated taking into account the sampling design of
KNHANES.

December 2018 and divide the post period into two: September-December 2018 and January 2019

and later (Bitler and Carpenter 2016; White 2021). In column (2) of Table 2, it can be seen that ex-

cluding the sample interviewed in September-December 2018 slightly increases the magnitude of

the coefficient relative to the baseline result in column (1). Next, in column (3), the coefficient on

Post 1 is smaller than that on Post 2 when I split the post period. However, the difference between

the two periods is small, so the reference window problem is not a major concern in this study.

Next, I examine two possible sources of contamination in the control group that can occur

depending on the definition of the treatment group. The first issue is that because the treatment
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Table 2: Robustness Checks

Baseline Reference window Contamination Excluding
COVID-19 periodExcluding 2018.9∼12 Alternative post Excluding age 13 Within household

(1) (2) (3) (4) (5) (6)

Treat × Post 0.1182*** 0.1227*** 0.1279*** 0.1254*** 0.1384***
(0.0259) (0.0280) (0.0271) (0.0289) (0.0296)

Treat × Post 1 0.1108**
(0.0519)

Treat × Post 2 0.1227***
(0.0280)

Observation 6699 6364 6699 6560 5994 6134

Notes: The results in each column use the same control variables as column (4) of Table 1, but with a different sample or definition of the post-
period used in the estimation. I use survey weights for all specifications. Standard errors are calculated taking into account the sampling design of
KNHANES. A single asterisk denotes statistical significance at the 90% confidence level, double 95%, triple 99%.

group is determined by age, contamination of the control group can occur over time after the

policy is implemented. Specifically, a 12-year-old child affected by the policy in the 2018 flu-year

is included in the control group in the 2019 flu-year. To examine this effect, I exclude 13-year-olds

from the analysis in column (4) of Table 2. The magnitude of the coefficient increases relative to the

baseline result, but the difference is not large. A second issue is that children in the control group

may have siblings who are affected by the policy. If there is a spillover effect of the policy within

the household, the estimated coefficient may be biased. The direction of the bias is unclear a priori:

if children not affected by the policy are considered as a group that does not need to be vaccinated,

the effect could be overestimated (Bouckaert, Gielen, and Van Ourti 2020). On the other hand, if

children in the treatment group cause parents to perceive influenza vaccination as necessary, this

could lead to an increase in vaccination rates among children in the control group. This could lead

to underestimation (Ma et al. 2006; Yoo et al. 2010). In column (5), excluding children with siblings

in the treatment group from the control group slightly increases the magnitude of the estimate, but,

again, the change is not substantial. Thus, contamination of the control group does not seem to be

a major concern in this analysis.

Finally, since the 2019 flu year includes part of the COVID-19 pandemic, it is included in the

analysis. However, it is unlikely that the COVID-19 pandemic would have affected the vaccination

rate in the 2019 flu year, as influenza vaccinations are mostly administered before the influenza
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epidemic season (December-April) to allow time for immunity to build up. Nevertheless, in col-

umn (6), I report results excluding the sample surveyed from February to August 2020. Here, the

coefficient increases by a relatively large amount, which is due to the fact that older children in the

control group are vaccinated at a relatively later point in the flu year.3

3.5 Additional Results

3.5.1 Did the Policy Reach Low-Income Groups?

The monetary cost of vaccination has been reported as a barrier to vaccination in a variety of popu-

lations, including the general public, children, and healthcare workers (Schmid et al. 2017). In the

South Korean context, a survey on the cost of influenza vaccination shows that 64.8% of parents

reported that vaccination was expensive, with lower-income households more likely to report that

influenza vaccination was expensive compared to higher-income households (Hwang et al. 2017).4.

After the policy was implemented, vaccination became free for eligible children. Therefore, I use

the following model to analyze whether the expansion of the age eligible for free influenza vacci-

nation contributed to the increase in vaccination rates among low-income households:

Yi = β0 +β1(Treati ×Postt)+β2(zi ×Treati ×Postt)+Other interaction terms+ γ
′Xi + εi (3)

where all other variables are the same as in equation 1, and zi denotes the individual characteristic

variable considered in each heterogeneity analysis. All interactions of zi, Treati, and Postt other

than the noted interactions are also included.

3. According to responses to the question about the timing of influenza vaccination, 94.32% of influenza vaccina-
tions occurred from September to December. However, when divided into treatment and control groups, 96.51% of
the treatment group reported being vaccinated during this period, while 86.28% of the control group reported being
vaccinated during this period.

4. Low-income households are more likely to have limited financial resources for healthcare compared to higher-
income households. Indeed, according to the KNHANES survey responses on unmet medical needs, the proportion
of unmet medical needs due to ”financial reasons” is significantly higher in the below-median income group (above-
median income: 2.34%, below-median income: 12.20%). Therefore, one might expect that financial constraints on
healthcare use would be greater in the lower-income group. However, the sample size is small (128 individuals with
unmet medical needs above median income and 82 below median income), so the reliability of the results is limited
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Table 3 shows the differences in policy effects by household income. Taking the baseline result

in column (1) and dividing it by those above and below the median income in column (2), there

is a 0.0762 increase in the probability of vaccination for children in households above the median

income, although the difference is not statistically significant. In column (3), when I use income

quartiles instead of median income, the effect of the policy increases linearly with the increase in

household income. Although the interpretation is limited because the differences between groups

in Table 3 are not statistically significant, it at least confirms that the probability of vaccination

does not increase more for those with greater financial constraints.

Table 3: Heterogeneity by Household Income

Baseline By household income
Median income Income quantile

(1) (2) (3)

Treat × Post 0.1182*** 0.0696 0.0552
(0.0259) (0.0460) (0.0972)

Treat × Post × Above median income 0.0762
(0.0558)

Treat × Post × Income quantile = 2 0.0243
(0.1122)

Treat × Post × Income quantile = 3 0.0692
(0.1073)

Treat × Post × Income quantile = 4 0.1136
(0.1071)

Observation 6699 6699 6699

Notes: The results in each column use the same control variables as column (4) of Table 1. Columns (2) and (3) present
the results of estimating equation 3 with respect to household income. I use survey weights for all specifications. Stan-
dard errors are calculated taking into account the sampling design of KNHANES. A single asterisk denotes statistical
significance at the 90% confidence level, double 95%, triple 99%.

The larger effect of the policy among higher-income groups, who are expected to have fewer

financial constraints, does not imply that financial costs are not important for influenza vaccination.

It may simply be that higher-income groups are more likely to take advantage of the policy that

provides monetary benefits. In Table 4, I first examine differences by income level for variables

closely associated with childhood influenza vaccination. Lower-income groups are generally more

likely to have mothers with less than a college degree, and the differences are quite large, even when
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Table 4: Descriptive Statistics by Household Income

Household income
Below median Above median Difference

Mother’s age 41.103 41.619 -0.517
Mother’s education:

Below college 0.477 0.286 0.191
Above college 0.327 0.618 -0.291
Missing 0.195 0.096 0.100

Mother’s working status:
Yes 0.524 0.633 -0.109
No 0.280 0.271 0.009
Missing 0.195 0.096 0.100

Daytime work:
Yes 0.825 0.866 -0.041
No 0.175 0.134 0.041

Healthcare facilities (per 1,000) 2.611 2.865 -0.253

Notes: Table 4 compares the means of variables associated with influenza vaccination of children by household income.

accounting for the higher proportion of missing variables.5 In addition, there is a clear difference

in whether mothers are working. If they are working, lower-income groups are slightly more likely

to be working irregular hours, night work, etc., rather than daytime hours. Finally, there are clear

differences in the number of healthcare facilities per 1,000 children eligible for vaccination in the

municipality of residence.

Next, I conduct a heterogeneity analysis using equation 3 by the variables identified in Table

4. Figure 3(a) shows that children whose mothers have a bachelor’s degree or higher are slightly

more likely to be vaccinated than children whose mothers have less than a bachelor’s degree, but

this difference is not statistically significant. Figure 3(b) shows the difference by mothers’ working

status. The increase in the probability of vaccination is significantly larger and statistically signif-

icant for those whose mothers are employed compared to those whose mothers are not. In Figure

3(c), I perform the same analysis by further categorizing mothers’ work status: working during

the day, working outside the day (night work, irregular work, etc.), and not working. The results

show that the increase in the probability of immunization is mainly for children with mothers who

work during the day compared to children with mothers who do not work. Finally, when I examine

5. Missing values may be due to non-response, either because the mother is actually absent from the household or
is absent at the time of the survey.
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differences based on access to healthcare in Figure 3(d), I find that the effect of the policy is greater

for those living in regions with a higher-than-average number of healthcare facilities compared to

those living in regions with a lower-than-average number of healthcare facilities per 1,000 eligible

children.

Figure 3: Heterogeneity Analysis by Key Variables

(a): By mother’s education (b): By mother’s working status

(c): By mother’s daytime work (d): By healthcare accessibility

Notes: Figure 3 shows the coefficients and 95% confidence intervals estimated using equation 3. I use survey
weights for all specifications. Standard errors are calculated taking into account the sampling design of
KNHANES.

The heterogeneity analysis suggests that the policy was more effective among working moth-

ers, and it is possible that this may have driven the differences observed by income level. There
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are two main channels through which mothers’ time costs may have changed with the expansion

of the age eligibility for national influenza vaccination, which may have contributed to the differ-

ences observed in Figure 3. First, the expansion of weekend health center operations during the

influenza vaccination campaign week. During the two-week vaccination campaign, health centers

were open on weekends in cities and districts that lacked referral providers. However, the propor-

tion of vaccinations at public health centers is significantly smaller when considering the statis-

tics by vaccination facilities collected after the policy was implemented.6 Therefore, it is unlikely

that the temporary expansion of health center operations would lead to a significant reduction in

time costs for mothers. Second, it is possible that, with the significant expansion of the eligible

age, healthcare providers anticipated a sharp increase in demand for influenza vaccinations and

increased their weekend operations. If this channel operated significantly, it would be consistent

with increased vaccination rates among children with working mothers and increased vaccination

rates in areas with greater access to healthcare.7

3.5.2 Effects of Vaccination Reminder Messages

In addition to supporting the cost of vaccination, information dissemination through educational

institutions was also implemented to increase vaccination rates. In particular, during the 2019 flu

year, all children aged 10 to 12 years old in upper elementary school were sent a reminder message

to reconsider the vaccination rate. Here, I examine the effect of the influenza vaccination reminder

message using the following model:

Yi = α + ∑
k∈K

= β
k
1 Treat1i×1[Flu yeart = k]+ ∑

k∈K
β

k
2 Treat2i×1[Flu yeart = k]+Other terms (4)

where Treat1i is a dummy variable that takes the value of 1 if the child is aged 5-9 years old

in the affected group, not receiving a vaccination reminder message from the influenza national

6. According to 질병관리본부 (2019), only 68,056, or about 1.5% of the total 5,744,731 children eligible for the
national influenza vaccination program in the 2018-2019 flu year, were vaccinated through public health centers. The
remaining 98.5% were vaccinated through referral facilities.

7. Analysis examining this channel is ongoing.
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vaccination program, and 0 otherwise. Treat2i is a dummy variable that takes the value of 1 if the

child is aged 10 to 12 years old and receives a reminder message, and 0 otherwise. All other control

variables in the model are the same as in equation 1.

Figure 4 shows β k
1 and β k

2 estimated from equation 4. If the reminder messages contributed

to increased vaccination rates, one would expect to see an increase in the coefficient for 10- to

12-year-olds in the 2019 flu year; however, no such pattern is observed in Figure 4.

Figure 4: Effects of Vaccination Reminder Messages

Notes: Figure 4 shows β k
1 , β k

2 , and 95% confidence intervals estimated using equation 4. The grayed-out
region represents the flu year when the vaccination reminder messages were sent to children aged 10-12
years. I use survey weights. Standard errors are calculated, taking into account the sampling design of
KNHANES.
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4 Effect of Coverage Expansion on Influenza-Related Health-

care Utilization

In Section 3, I analyzed the effect of the expansion of the age of eligibility for national influenza

vaccination on vaccination rates. In this section, I examine whether the policy-induced increase in

vaccination rates led to improvements in health outcomes.

4.1 Data

To analyze the incidence of influenza, I use the National Health Insurance Service (NHIS) National

Health Information Database. The database is generated by processing individual medical informa-

tion collected by the NHIS to meet the purpose of the study. It allows the researcher to determine

the sample population, sample size, and sampling period from the entire population of health in-

surance enrollees. The data used in this study include individuals 23 years of age or younger as

of 2017, selected by random sampling stratified by sex and age. It includes eligibility data such as

gender, age, insurance type, insurance premium, and medical claims data. Based on these data, a

sample of children aged 5 to 18 is constructed and analyzed for the 2014 flu year through the 2018

flu year.

Figure 5 shows the number of influenza-related claims per 1,000 children for flu years 2014-

2017, before the policy was implemented. As with influenza vaccination, it is evident that younger

children are more susceptible to influenza. Therefore, I use the same difference-in-differences

model as in Section 3 to identify policy effects, controlling for group differences and year-to-year

trends in influenza incidence.
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Figure 5: Influenza-Related Healthcare Utilization by Age Before Coverage Expansion

Notes: Figure 5 shows the number of influenza-related healthcare utilization per 1,000 children for flu years
2014-2017, before the policy was implemented. Source: NHIS data.

4.2 Empirical Approach

4.2.1 Violation of the Identifying Assumption of Difference-in-Differences Model

First, similar to Section 3, I estimate the following event study model to examine the validity of

using a difference-in-differences approach to analyze the impact of expanding the eligible age for

the National Vaccination Program on influenza-related healthcare utilization:

Yit = β0 +β1Treati +β2Yeart + ∑
k∈K

β
k
3 (Treati ×1[Flu yeart = k])+ γ

′Xit + εit (5)
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where Yit is the number of influenza-related claims per 1,000 children in year-month t for age group

i. Treati is a dummy variable that takes the value 1 for age group 5-12 and 0 for age group 13-18. In

this section, the 2019 flu year is excluded due to COVID-19, so the post period is only the 2018 flu

year (K = {2014,2015,2016,2018}) and the reference year is the 2017 flu year before the policy

was implemented. Xit includes the interaction term with Treati of the quadratic term of the average

monthly precipitation, the average temperature, and the linear time trend of the flu year. εit is the

clustered standard error at the age by flu year level.

Figure 6 shows the results of the estimation using equation 5. Clearly, the number of flu-related

claims in the treatment group was relatively small in the 2014 flu year compared to the 2017 flu

year. Thereafter, the coefficient is close to zero, and in the 2018 flu year, when the policy was

implemented, the coefficient is positive but insignificant. The results in Figure 6 suggest that the

identifying assumption of the difference-in-differences model may be violated.

The potential for bias due to time-varying confounding becomes more pronounced when the

distribution of circulating influenza types and vaccine match over time are considered. Figure (7)

shows the influenza virus type and vaccine match by influenza year collected from influenza lab-

oratory specimen surveillance reports, along with the number of related claims.8 According to

Figure 7, in the 2018 flu year, influenza type B was particularly prevalent in the spring, and it is

clear that the vaccine match was significantly lower during this period. At the same time, there is

a clear increase in influenza-related healthcare utilization during this period compared to other flu

years, suggesting that, in addition to the linear trend across flu years seen in Figure 7, there are

likely confounding factors specific to the 2018 flu year. In particular, the single post-period in this

section exacerbates this problem. To mitigate the effect of vaccine mismatch, I consider a triple

difference model with an additional interaction term comparing periods of high and low match.

8. Influenza vaccine match is calculated as follows:

Et = Mh1
t × Ih1

t +Mh3
t × Ih3

t +MB
t × IB

t

where Et is the influenza vaccine match rate for the month, M∗
t is the match between the vaccine strain and the

circulating strain for each influenza virus type (H1N1, H3N2, B). I∗t is the proportion of each type in the total number
of influenza viruses detected per month
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Figure 6: Event Study Results

Notes: Figure 6 shows the coefficients and 95% confidence intervals estimated using equation 5. Standard
errors are clustered by age group.

4.2.2 Match Rate as Moderating Channel

In order to use the influenza vaccine match rate as an additional difference variable, the effective-

ness of influenza vaccination should actually vary by the vaccine match rate. To explore this, I

collected influenza vaccination coverage data by district (sigungu in Korean) and age group for

the 2018 flu year.9 Using the influenza vaccination rates and vaccine match rates, I estimate the

9. KDCA only provides information on influenza vaccination coverage for those eligible for the National Vaccina-
tion Program.
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Figure 7: Influenza-Related Healthcare Use, Circulating Influenza Type and Vaccine Match Rate

Notes: Figure 7 shows the type of influenza virus detected and the vaccine match rate, along with the number
of healthcare use, collected using influenza laboratory specimen surveillance reports.

following difference-in-differences model:

Yicm = β1(Vic ×Mm)+δic +δsm + εicm (6)

where Yicm is the number of influenza-related claims per 1,000 children in year-month t for age

group i. The age groups are 5-6 years, 7-9 years, and 10-12 years. Vic is the influenza vaccination

rate, and Mm is the influenza vaccine match rate. To control for time-invariant local characteristics

related to influenza vaccination, I include age group-district fixed effects, δic, in the model. To

control for region-specific time trends, I control for province-month fixed effects, δsm. Standard

errors are clustered at the age group-district level.

Table 5 presents the results of estimating equation 6. In column (1), it can be seen that the

relationship between vaccination rate and influenza-related healthcare utilization is positive. This
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Table 5: Relationship Between Influenza Vaccination Rates and Healthcare Utilization by Vaccine
Match Rate

All months Flu-season Non-season
(1) (2) (3) (4) (5) (6)

Vaccination rate 68.486*** 68.486*** 85.620***
(4.962) (4.962) (14.150)

Match rate 14.114*** 31.141**
(1.630) (12.243)

Vaccination rate * Match rate -24.774 -59.951*** -51.686* -8.321**
(17.989) (15.924) (28.004) (3.778)

Controls:
Age group-district FE Y Y Y
Province-month FE Y Y Y

Observation 9000 9000 9000 9000 4500 4500

Notes: Table 5 presents the results of estimating equation 6. Columns (1)–(3) are models without fixed
effects, while column (4) controls for age group-district fixed effects and province-month fixed effects.
Columns (5)–(6) estimate the model in column (4) separately for influenza epidemic and non-epidemic
periods. Standard errors are clustered at the age group-district level. A single asterisk denotes statistical
significance at the 90% confidence level, double 95%, and triple 99%.

suggests that local healthcare infrastructure, climate, etc. are confounding factors in the relation-

ship between influenza vaccination rates and healthcare utilization. Therefore, it is necessary to

control for the baseline term of vaccination rate or age group-district fixed effects. Next, when

including the vaccine match rate in column (2), the relationship between the match rate and health-

care utilization is positive because the period of high match rate in the 2018 flu year coincides

with the peak of the relatively virulent influenza A season. In column (3), I add an interaction

term between vaccination rates and match rates. Although not significant, it shows that healthcare

utilization decreases as vaccination rates increase during periods of high match. Then, in column

(4), I control for province-month fixed effects and find a clear negative relationship. Finally, in

columns (5) and (6), when separating influenza-active and non-influenza-active seasons, it is ob-

served that the decrease in healthcare utilization following influenza vaccination occurs mainly

during influenza-active seasons. These results support the idea that vaccine match rates moderate

the effect of influenza vaccination on healthcare utilization.
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4.2.3 Triple Difference Model

To account for the violation of the identifying assumption identified in Section 4.2.1 and the time-

varying confounders present in the 2018 flu year, I estimate the following triple difference model

using the vaccine match rate:

Yimt = β0 +β1Treati ∗Postt ∗Good matchmt +Other interaction terms+ γ
′Xit + εimt (7)

where Good matchmt is a dummy variable that takes the value of 1 if it is greater than or equal

to the average vaccine match for the entire sample period, and 0 otherwise. The interaction terms

between Treati, Postt , and Good matchmt are all included in the model. Otherwise, it is the same

as equation 5.

4.3 Estimation Results

4.3.1 Validity of Identifying Assumption

In Figure 8, I examine the time trends of low and high match rates before estimating the triple

difference model. Figure 8(a) presents the results of estimating the difference-in-differences event

study model for each of the periods of high and low match rates. The results show that prior to

the expansion of the eligible age, both periods exhibit similar trends when compared to the 2017

flu year. In the 2015 flu year, there is a slight increase in the difference, but it is not statistically

significant. In the 2018 flu year, after the policy was implemented, the number of healthcare uti-

lization increases sharply during the low match period, while the coefficient is close to zero during

the high match period. In Figure 8(b), the triple difference event study model is estimated. Similar

to the pattern identified in Figure 8(a), the difference between the treatment and control groups

in the low versus high match periods is not significant before the policy was implemented, but

influenza-related healthcare utilization in the treatment group decreases after the policy was im-

plemented. The results in Figure 8 show that the low match period fits as a counterfactual to the

high match period, and that the triple difference model effectively controls for the low matched
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type of epidemic that occurred during the 2018 flu year.

Figure 8: Event Study Results

(a): DD by match rate (b): DDD event study

Notes: In Figure 8(a), I present the results of estimating a difference-in-differences event study model for
each of the high and low vaccine match periods. In Figure 8(b), the triple difference event study model is
estimated. Standard errors are clustered by age and flu year group.

4.3.2 Main Results

Table 6 presents the results of estimating the effect of expanding the age of eligibility for the

national influenza vaccination program on influenza-related healthcare utilization. First, columns

(1)–(4) present the results of estimating a difference-in-differences model. Column (1) is a model

without control variables and shows that influenza-related healthcare utilization in the treatment

group increases after the policy is implemented, although it is not statistically significant. Moti-

vated by the trend in Figure 4, it is then observed that the sign of the coefficient changes to negative

when controlling for group-specific linear flu-year trends. In columns (3)–(4), I additionally control

for climate variables, resulting in a slight change in the coefficient, which is close to zero at -0.893

in column (4). However, these analyses do not account for the effect of the vaccine mismatch that

occurred during the 2018 flu year, as shown in Figure 6.

Next, columns (5) and (6) present the difference-in-differences estimates divided into periods
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of high and low match. The results show that the increase in the number of cases in the treatment

group occurs during the period of poor match, while the number of cases decreases during the

period of good match, although not statistically significant.

In column (7), I estimate a triple difference model (equation 7) by adding a dummy variable

for the good vaccine match period to estimate the difference between the two periods. The esti-

mated coefficient of the triple difference is statistically significant, implying a 13.644 decrease in

influenza-related healthcare utilization in the treatment group during the good match period after

the policy was implemented. In column (8), I estimate a triple difference model with a continuous

match rate. There is a significant decrease in influenza-related healthcare utilization in the treat-

ment group as the match rate increases, with a -10.86 decrease in healthcare utilization for a 1 SD

increase in vaccine match rate.10. Column (9) reports the difference-in-differences estimate using

the sample in columns (7) and (8) to check for the effect of differences in sample composition, as

there are missing observations due to the lack of information on vaccine matches.

5 Conclusion

This study analyzed the effects of the influenza vaccination program for children aged 5 to 12

years in South Korea. According to the results, the policy increased the vaccination rate of chil-

dren aged 5 to 12 by about 11.8 percentage points, which is 20 percent higher than the average

before the policy was implemented. Next, I examined whether the monetary support for the na-

tional influenza vaccination program had an impact on groups with greater financial constraints in

healthcare utilization. I found that the effect of the policy was greater among higher-income house-

holds, despite the fact that lower-income households had greater financial constraints in healthcare

utilization. This may be due to higher access to healthcare in the higher-income group, as well

as possible changes in factors related to the time costs of working mothers. Further analysis is

needed to identify clear channels. Finally, I analyzed the impact of increased vaccination rates on

10. The vaccine match rate has a mean of 0.6325 and a standard deviation of 0.3342
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influenza-related healthcare utilization. Triple-difference model estimates suggest that influenza-

related healthcare utilization among children aged 5 to 12 years decreased by 13.644 cases per

1,000 children during the period of high match rates after the policy was implemented.
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